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This book serves as an introduction to genomics, proteomics, and tran-
scriptomics, putting these fields in relation to human disease and ailments. 
The various chapters consider the role of translation and personalized 
medicine, as well as pathogen detection, evolution, and infection, in rela-
tion to genomics, proteomics, and transcriptomics. The topic of compan-
ion diagnostics is also covered.

The book is broken into fi ve sections. Part I examines the connection 
between Omics and Human disease. Part II looks at the applications for 
the fi elds of translational and personalized medicine. Part II focuses on 
molecular and genetic markers. Part IV describes the use of omics while 
studying pathogens, and Part V examines the applications for companion 
diagnostics.

Mitochondria are the most complex and the most important organelles 
of eukaryotic cells, which are involved in many cellular processes, includ-
ing energy metabolism, apoptosis, and aging. And mitochondria have been 
identifi ed as the "hot spot" by researchers for exploring relevant associated 
dysfunctions in many fi elds. In Chapter 1, the emergence of comparative 
proteomics enables Jiang and Wang to have a close look at the mitochon-
drial proteome in a comprehensive and effective manner under various 
conditions and cellular circumstances. Two-dimensional electrophoresis 
combined with mass spectrometry is still the most popular techniques to 
study comparative mitochondrial proteomics. Furthermore, many new 
techniques, such as ICAT, MudPIT, and SILAC, equip researchers with 
more fl exibilities inselecting proper methods. This article also reviews the 
recent development of comparative mitochondrial proteomics on diverse 
human diseases. And the results of mitochondrial proteomics enhance a 
better understanding of the pathogenesis associated with mitochondria and 
provide promising therapeutic targets.

Omics approaches to the study of complex biological systems with 
potential applications to molecular medicine are attracting great interest in 

INTRODUCTION



xx Introduction

clinical as well as in basic biological research. Genomics, transcriptomics 
and proteomics are characterized by the lack of an a priori defi nition of 
scope, and this gives suffi cient leeway for investigators (a) to discern all at 
once a globally altered pattern of gene/protein expression and (b) to exam-
ine the complex interactions that regulate entire biological processes. Two 
popular platforms in “omics” are DNA microarrays, which measure mes-
senger RNA transcript levels, and proteomic analyses, which identify and 
quantify proteins. Because of their intrinsic strengths and weaknesses, no 
single approach can fully unravel the complexities of fundamental biolog-
ical events. However, an appropriate combination of different tools could 
lead to integrative analyses that would furnish new insights not accessible 
through one-dimensional datasets. In Chapter 2, Silvestri and colleagues 
outline some of the challenges associated with integrative analyses relat-
ing to the changes in metabolic pathways that occur in complex patho-
physiological conditions (viz. ageing and altered thyroid state) in relevant 
metabolically active tissues. In addition, the authors discuss several new 
applications of proteomic analysis to the investigation of mitochondrial 
activity.

The wide application of next-generation sequencing (NGS), mainly 
through whole genome, exome and transcriptome sequencing, provides 
a high-resolution and global view of the cancer genome. Coupled with 
powerful bioinformatics tools, NGS promises to revolutionize cancer 
research, diagnosis and therapy. In Chapter 3, Shyr and Liu review the 
recent advances in NGS-based cancer genomic research as well as clini-
cal application, summarize the current integrative oncogenomic projects, 
resources and computational algorithms, and discuss the challenge and 
future directions in the research and clinical application of cancer genomic 
sequencing.

The mapping of the human genome and subsequent advancements in 
genetic technology had provided clinicians and scientists an understand-
ing of the genetic basis of altered drug pharmacokinetics and pharmaco-
dynamics, as well as some examples of applying genomic data in clinical 
practice. This has raised the public expectation that predicting patients’ 
responses to drug therapy is now possible in every therapeutic area, and 
personalized drug therapy would come sooner than later. However, de-
bate continues among most stakeholders involved in drug development 
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and clinical decision-making on whether pharmacogenomic biomarkers 
should be used in patient assessment, as well as when and in whom to 
use the biomarker-based diagnostic tests. Currently, most would agree that 
achieving the goal of personalized therapy remains years, if not decades, 
away. Realistic application of genomic fi ndings and technologies in clini-
cal practice and drug development require addressing multiple logistics 
and challenges that go beyond discovery of gene variants and/or comple-
tion of prospective controlled clinical trials. In Chapter 4, Lam argues that  
the goal of personalized medicine can only be achieved when all stake-
holders in the fi eld work together, with willingness to accept occasional 
paradigm change in their current approach.

Since the advent of the new proteomics era more than a decade ago, 
large-scale studies of protein profi ling have been used to identify distinc-
tive molecular signatures in a wide array of biological systems, spanning 
areas of basic biological research, clinical diagnostics, and biomarker dis-
covery directed toward therapeutic applications. Recent advances in pro-
tein separation and identifi cation techniques have signifi cantly improved 
proteomic approaches, leading to enhancement of the depth and breadth of 
proteome coverage. Proteomic signatures, specifi c for multiple diseases, 
including cancer and pre-invasive lesions, are emerging. Chapter 5, by 
López and colleagues, combines, in a simple manner, relevant proteomic 
and OMICS clues used in the discovery and development of diagnostic 
and prognostic biomarkers that are applicable to all clinical fi elds, thus 
helping to improve applications of clinical proteomic strategies for trans-
lational medicine research.

Genome sequencing and bioinformatics have provided the full hypo-
thetical proteome of many pathogenic organisms. Advances in microarray 
and mass spectrometry have also yielded large output datasets of possible 
target proteins/genes. However, the challenge remains to identify new tar-
gets for drug discovery from this wealth of information. Further analy-
sis includes bioinformatics and/or molecular biology tools to validate the 
fi ndings. This is time consuming and expensive, and could fail to yield 
novel drugs if protein purifi cation and crystallography is impossible. To 
pre-empt this, a researcher may want to rapidly fi lter the output datasets 
for proteins that show good homology to proteins that have already been 
structurally characterised or proteins that are already targets for known 
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drugs. Critically, those researchers developing novel antibiotics need to 
select out the proteins that show close homology to any human proteins, 
as future inhibitors are likely to cross-react with the host protein, causing 
off-target toxicity effects later in clinical trials. To solve many of these 
issues, in Chapter 6, Toomey and colleagues developed a free online re-
source called Genomes2Drugs which ranks sequences to identify proteins 
that are (i) homologous to previously crystallized proteins or (ii) targets of 
known drugs, but are (iii) not homologous to human proteins. When tested 
using the Plasmodium falciparum malarial genome the program correctly 
enriched the ranked list of proteins with known drug target proteins. Ge-
nomes2Drugs rapidly identifi es proteins that are likely to succeed in drug 
discovery pipelines. This free online resource helps in the identifi cation of 
potential drug targets. Importantly, the program further highlights proteins 
that are likely to be inhibited by FDA-approved drugs. These drugs can 
then be rapidly moved into Phase IV clinical studies under ‘change-of-
application’ patents.

Since the emergence of the so-called omics technology, thousands of 
putative biomarkers have been identifi ed and published, which have dra-
matically increased the opportunities for developing more effective thera-
peutics. These opportunities can have profound benefi ts for patients and 
for the economics of healthcare. However, the transfer of biomarkers from 
discovery to clinical practice is still a process fi lled with lots of pitfalls and 
limitations, mostly limited by structural and scientifi c factors. To become 
a clinically approved test, a potential biomarker should be confi rmed and 
validated using hundreds of specimens and should be reproducible, spe-
cifi c and sensitive. Besides the lack of quality in biomarker validation, 
a number of other key issues can be identifi ed and should be addressed. 
Therefore, the aim of Drucker and Krapfenbauer in Chapter 7 is to discuss 
a series of interpretative and practical issues that need to be understood 
and resolved before potential biomarkers become a clinically approved 
test or are already on the diagnostic market. Some of these issues are short-
ly discussed here.

The currently hyped expectation of personalized medicine is often as-
sociated with just achieving the information technology led integration 
of biomolecular sequencing, expression and histopathological bioimaging 
data with clinical records at the individual patients’ level as if the signifi -
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cant biomedical conclusions would be its more or less mandatory result. 
It remains a sad fact that many, if not most biomolecular mechanisms that 
translate the human genomic information into phenotypes are not known 
and, thus, most of the molecular and cellular data cannot be interpreted in 
terms of biomedically relevant conclusions. Whereas the historical trend 
will certainly be into the general direction of personalized diagnostics and 
cures, the temperate view suggests that biomedical applications that rely 
either on the comparison of biomolecular sequences and/or on the already 
known biomolecular mechanisms have much greater chances to enter clin-
ical practice soon. In addition to considering the general trends, in Chapter 
8, Kuznetsov et al. review advances in the area of cancer biomarker dis-
covery, in the clinically relevant characterization of patient-specifi c viral 
and bacterial pathogens (with emphasis on drug selection for infl uenza and 
enterohemorrhagic E. coli) as well as progress in the automated assess-
ment of histopathological images. As molecular and cellular data analysis 
will become instrumental for achieving desirable clinical outcomes, the 
role of bioinformatics and computational biology approaches will dramat-
ically grow.

The advent of genomics and proteomics has been a catalyst for the 
discovery of biomarkers able to discriminate biological processes such as 
the pathogenesis of complex diseases. Prompt detection of prion diseases 
is particularly desirable given their transmissibility, which is responsible 
for a number of human health risks stemming from exogenous sources 
of prion protein. Diagnosis relies on the ability to detect the biomarker 
PrPSc, a pathological isoform of the host protein PrPc, which is an essential 
component of the infectious prion. Immunochemical detection of PrPSc is 
specifi c and sensitive enough for antemortem testing of brain tissue, how-
ever, this is not the case in accessible biological fl uids or for the detection 
of recently identifi ed novel prions with unique biochemical properties. A 
complementary approach to the detection of PrPSc itself is to identify al-
ternative, “surrogate” gene or protein biomarkers indicative of disease. 
Biomarkers are also useful to track the progress of disease, especially im-
portant in the assessment of therapies, or to identify individuals “at risk”. 
In Chapter 9, Huzarewich and colleagues provide perspective on current 
progress and pitfalls in the use of “omics” technologies to screen body 
fl uids and tissues for biomarker discovery in prion diseases.
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Bacterial pathogens impose a heavy burden of disease on human popu-
lations worldwide. The gravest threats are posed by highly virulent re-
spiratory pathogens, enteric pathogens, and HIV-associated infections. 
Tuberculosis alone is responsible for the deaths of 1.5 million people an-
nually. Treatment options for bacterial pathogens are being steadily eroded 
by the evolution and spread of drug resistance. However, population-level 
whole genome sequencing offers new hope in the fi ght against pathogenic 
bacteria. By providing insights into bacterial evolution and disease etiolo-
gy, these approaches pave the way for novel interventions and therapeutic 
targets. Sequencing populations of bacteria across the whole genome pro-
vides unprecedented resolution to investigate (i) within-host evolution, (ii) 
transmission history, and (iii) population structure. Moreover, advances 
in rapid benchtop sequencing herald a new era of real-time genomics in 
which sequencing and analysis can be deployed within hours in response 
to rapidly changing public health emergencies. The purpose of Chapter 
10 by Dr. Wilson, is to highlight the transformative effect of population 
genomics on bacteriology, and to consider the prospects for answering 
abiding questions such as why bacteria cause disease.

With the availability of new generation sequencing technologies, bac-
terial genome projects have undergone a major boost. Still, chromosome 
completion needs a costly and time-consuming gap closure, especially 
when containing highly repetitive elements. However, incomplete genome 
data may be suffi ciently informative to derive the pursued information. 
For emerging pathogens, i.e. newly identifi ed pathogens, lack of release of 
genome data during gap closure stage is clearly medically counterproduc-
tive. Thus, in Chapter 11, Greub and colleagues investigated the feasibility 
of a dirty genome approach, i.e. the release of unfi nished genome sequenc-
es to develop serological diagnostic tools. They showed that almost the 
whole genome sequence of the emerging pathogen Parachlamydia acan-
thamoebae was retrieved even with relatively short reads from Genome 
Sequencer 20 and Solexa. The bacterial proteome was analyzed to select 
immunogenic proteins, which were then expressed and used to elaborate 
the fi rst steps of an ELISA. This work constitutes the proof of principle for 
a dirty genome approach, i.e. the use of unfi nished genome sequences of 
pathogenic bacteria, coupled with proteomics to rapidly identify new im-
munogenic proteins useful to develop in the future specifi c diagnostic tests 
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such as ELISA, immunohistochemistry and direct antigen detection. Al-
though applied here to an emerging pathogen, this combined dirty genome 
sequencing/proteomic approach may be used for any pathogen for which 
better diagnostics are needed. These genome sequences may also be very 
useful to develop DNA based diagnostic tests. All these diagnostic tools 
will allow further evaluations of the pathogenic potential of this obligate 
intracellular bacterium.

The drastic increase in the number of coronaviruses discovered and 
coronavirus genomes being sequenced have given researchers an unprec-
edented opportunity to perform genomics and bioinformatics analysis on 
this family of viruses. Coronaviruses possess the largest genomes (26.4 
to 31.7 kb) among all known RNA viruses, with G + C contents varying 
from 32% to 43%. Variable numbers of small ORFs are present between 
the various conserved genes (ORF1ab, spike, envelope, membrane and nu-
cleocapsid) and downstream to nucleocapsid gene in different coronavirus 
lineages. Phylogenetically, three genera, Alphacoronavirus, Betacorona-
virus and Gammacoronavirus, with Betacoronavirus consisting of sub-
groups A, B, C and D, exist. A fourth genus, Deltacoronavirus, which in-
cludes bulbul coronavirus HKU11, thrush coronavirus HKU12 and munia 
coronavirus HKU13, is emerging. In Chapter 12, Woo and colleagues used 
molecular clock analysis using various gene loci to reveal that the time 
of most recent common ancestor of human/civet SARS related coronavi-
rus to be 1999-2002, with estimated substitution rate of 4´10-4 to 2´10-2 
substitutions per site per year. Recombination in coronaviruses was most 
notable between different strains of murine hepatitis virus (MHV), be-
tween different strains of infectious bronchitis virus, between MHV and 
bovine coronavirus, between feline coronavirus (FCoV) type I and canine 
coronavirus generating FCoV type II, and between the three genotypes of 
human coronavirus HKU1 (HCoV-HKU1). Codon usage bias in coronavi-
ruses were observed, with HCoV-HKU1 showing the most extreme bias, 
and cytosine deamination and selection of CpG suppressed clones are the 
two major independent biological forces that shape such codon usage bias 
in coronaviruses.

Novel DNA sequencing techniques, referred to as “next-generation” 
sequencing (NGS), provide high speed and throughput that can produce 
an enormous volume of sequences with many possible applications in re-
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search and diagnostic settings. In Chapter 13, Barzon and colleagues pro-
vide an overview of the many applications of NGS in diagnostic virology. 
NGS techniques have been used for high-throughput whole viral genome 
sequencing, such as sequencing of new infl uenza viruses, for detection 
of viral genome variability and evolution within the host, such as inves-
tigation of human immunodefi ciency virus and human hepatitis C virus 
quasispecies, and monitoring of low-abundance antiviral drug-resistance 
mutations. NGS techniques have been applied to metagenomics-based 
strategies for the detection of unexpected disease-associated viruses and 
for the discovery of novel human viruses, including cancer-related viruses. 
Finally, the human virome in healthy and disease conditions has been de-
scribed by NGS-based metagenomics.

Accurate diagnosis and proper monitoring of cancer patients remain a 
key obstacle for successful cancer treatment and prevention. Therein comes 
the need for biomarker discovery, which is crucial to the current oncologi-
cal and other clinical practices having the potential to impact the diagnosis 
and prognosis. In fact, most of the biomarkers have been discovered uti-
lizing the proteomics-based approaches. Although high-throughput mass 
spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and 
iTRAQ are fi lling up the pitfalls of the conventional techniques, still se-
rum proteomics importunately poses hurdle in overcoming a wide range of 
protein concentrations, and also the availability of patient tissue samples is 
a limitation for the biomarker discovery. Thus, researchers have looked for 
alternatives, and profi ling of candidate biomarkers through tissue culture 
of tumor cell lines comes up as a promising option. It is a rich source of 
tumor cell-derived proteins, thereby, representing a wide array of potential 
biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 
125, CA 15.3, CA 19.9, and PSA) were discovered through tissue culture-
based system and tissue extracts. Chapter 14, by Paul and colleagues, tries 
to emphasize the tissue culture-based discovery of candidate biomarkers 
through various mass spectrometry-based proteomic approaches.
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CHAPTER 1

This chapter was originally published under the Creative Commons Attribution License. Jiang Y and 
Wang X. Comparative Mitochondrial Proteomics: Perspective in Human Diseases. Journal of Hema-
tology and Oncology 5,11 (2012), doi:10.1186/1756-8722-5-11.

COMPARATIVE MITOCHONDRIAL 
PROTEOMICS: PERSPECTIVE IN 
HUMAN DISEASES

YUJIE JIANG AND XIN WANG

1.1 INTRODUCTION

Mitochondria, which are mainly composed by proteins and lipids, are con-
sidered as the most complex and the most important organelles of eukary-
otic cells. They not only play a leading role in the energy metabolism, but 
are also closely involved in many cellular processes. Furthermore, mito-
chondria have a manageable level of complexity as a consequence of their 
apparent prokaryotic ancestry. Their endosymbiotic origins have been well 
preserved in their double membrane structure, and they possess their own 
circular genome with mitochondria-specific transcription, translation, and 
protein assembly systems [1]. Based upon the human genome, there is 
estimated to be approximately 2000 to 2500 mitochondrial proteins [2], 
however, just over 600 have been identified at the protein level [3]. For 
this reason, mitochondria contain a great number of proteins that have yet 
to be identified and characterized.
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Due to the fact that proteins are the carriers of biotic movement, the 
mitochondrial proteome is deemed as an ideal target for global proteome 
analysis. In the past, many effects of disease processes in which mitochon-
dria are involved have been studied using classic biochemical methods 
[4]. However, these studies usually focus on only one particular protein, 
but not on the whole mitochondrial proteome. Recent developments in 
proteomics have allowed more in-depth studies of proteins. Proteomics is 
the large-scale study of all proteins in an organism and allowes a global 
insight into the abundance of protein expression, localization, and interac-
tion. Combining genomics, mass spectrometry, and computation, it is pos-
sible to systematically identify the mammalian mitochondrial proteome. 
The proteome is often used to investigate the pathogenesis, cellular pat-
terns, and functional correlations on protein levels in a non-biased manner 
[5]. This proteomic approach also allows the possibility for developing 
new candidate biomarkers for the diagnosis, staging and tracking of dis-
ease. Comparative proteomics is a subset of proteomics whose primary 
purpose is revolving around the following fi elds: the investigation of the 
pathogenesis and mechanism of a drug, the discovery of new targets for di-
agnosis and treatment, and the examination of the effects of environmental 
factors on soma and cells. Thus, many signifi cant proteins have been iden-
tifi ed from normal and abnormal individuals often under various states 
treated by some agents. Researchers have made tremendous efforts to rap-
idly obtain results to study the differentially expressed proteins in the sub-
cellular organelle. By doing so, the diversity of proteins can be unmasked 
and reveal the subcellular location information. Therefore, owing to the 
signifi cant roles and functions in the cell, mitochondria have become a re-
search “hot spot” in subcellular proteomics. With these new techniques, a 
thorough investigation of comparative mitochondrial proteomics becomes 
more and more achievable. Mitochondrial proteomic profi les have been 
generated across multiple organs, including brain, heart, liver, and kidney 
[6-8]. This review presents a summary of progression of the mitochondrial 
proteome in various human diseases using comparative proteomic tech-
niques reported in recent years. Future prospects and challenges for the 
mitochondrial proteome will also be discussed.
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1.2 TECHNIQUES IN COMPARATIVE PROTEOMICS OF 
MITOCHONDRIA (BOTH GEL-BASED AND GEL-FREE)

1.2.1 GEL-BASED TECHNIQUES

Two-dimensional gel electrophoresis (2-DE) combined with mass spec-
tra is still the most popular gel-based proteomic technique for compara-
tive proteomics nowadays and has matured significantly over the past 
decades [9]. The most frequently used method is termed “bottom-up pro-
teomics,” which is a strategy using mass spectrometry or tandem mass 
spectrometry (MS/MS) to analyze proteolytically digested proteins [10]. 
Peptide mass fingerprinting (PMF) of digested peptide fragments using 
matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) 
is the preferred method for an initial protein identification after separa-
tion by 2-DE due to its high throughput and cost efficiency [11]. How-
ever, 2-DE has many shortcomings in separating certain protein classes, 
such as membrane proteins, high molecular weight (> 200 kDa) or small 
molecularweight proteins (< 10 kDa), and basic proteins, ect. The ap-
plication of 2-DE to study the mitochondrial proteome has its owndis-
advantages [12,13]. Two-dimensional fluorescence difference gel elec-
trophoresis (2D-DIGE) is the development of 2-DE that was originally 
introduced by Minden [14]. It also allows for the direct comparison of 
the changes in protein abundance changes, which is less than 10% across 
samples simultaneously with a 95% statistical reliability coefficient 
without interference due to gel-to-gel variation [15]. Moreover, another 
technique named BNPAGE (blue native gel electrophoresis) invented by 
Shägger and Jagow, is specialized for separating intact membrane pro-
tein complexes [16]. It has been primarily used to separate and isolate 
the five multi-polypeptide complexes of the oxidative phosphorylation 
(OXPHOS) system and the recovery of all respiratory chain complexes 
are approaching the level of detection [17].
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1.2.2 NON-GEL BASED TECHNIQUES: MUDPIT AND ICATS

Multi-dimensional protein identification technology (MudPIT) combines the 
resolving power of high performance liquid chromatography (HPLC) with 
the analytical capacity of tandem mass spectrometry (MS/MS). Using this 
method, a complex protein mixture is first digested with a protease resulting in 
an even more complex peptide mixture that is resolved by multidimensional 
HPLC. As the peptides are eluted off of the column, they are analyzed by mass 
spectrometry. Yates et al introduced this automated multidimensional protein 
identification technology termed “shotgun” proteomics and demonstrated that 
a dynamic range of 10,000 to 1 between the most abundant and least abun-
dant proteins/peptides in a complex peptide mixture could be identified [18]. 
MudPIT overcomes the shortcomings of mass spectrometry such as deficien-
cies in detecting proteins with extreme alkalinity, hydrophobicity, and maxi-
mum or minimum molecular mass. However, MudPIT cannot yet accomplish 
absolute quantitation. Gygi introduced isotope coded affinity tags (ICAT) in 
which isotypical and different biotin-containing moieties are conjugated to 
cysteine residues from two different peptide samples to quantitate the mixture 
of proteins [19]. This technique has been applied successfully to the detection 
of membrane proteins [20]. Shotgun proteomics combined with stable isotope 
labeling or label-free methods are effective in achieving absolute or relative 
protein quantification [21].

Many new proteomics techniques have been developed, such as iTRAQ 
(multiplexed isobaric tagging technology), protein chip, SELDI-TOF-MS 
(surface enhanced laser desorption/ionization of fl ight mass spectrome-
try), and SILAC (stable isotope labeling by amino acids in cell culture) 
[22-24]. Ultimately, the fi eld of proteomics, with its depth and fast pace of 
investigation, has a tendency to combine multiple techniques so as to best 
utilize the benefi ts of each technique.

1.3 PERSPECTIVE ON HUMAN DISEASE AND MITOCHONDRIAL 
COMPARATIVE PROTEOMICS

Applications of mitochondrial proteomics have shed some light on the 
diagnosis and treatment of many diseases associated with mitochondria. In 



addition, comparison of mitochondrial proteome from healthy and diseased 
tissues could result in the identification of biomarkers for the early diagnosis 
and pathologies concerned with mitochondrial dysfunction (Table 1).

1.3.1 NERVOUS SYSTEM

Because the brain is considerably complex and hclewglnouo caccine or-
ganism, the orthodox empirical methods cannot meet the need to investi-
gate the brain's constitution and function. The complexity of the nervous 
system is represented by the cellular categories and the number of syn-
apses. Moreover, because the brain is a vital organ with massive energy 
consumption and can only utilize the energy produced from the process 
of anaerobic glycolysis, the role of mitochondriais very considerable in 
this tissue.

A series of studies have identifi ed an abundance of alterations of in 
mitochondrial protein levels. To demonstrate that mutations in mitochon-
drial tRNA would affect the pattern of mitochondrial proteins, Rabilloud 
et al found a number of proteins in sibling hybrid cell lines using pro-
teomic methods [25]. Two proteins that exhibited obvious large quantita-
tive decreases were identifi ed as nuclear-encoded subunits of cytochrome 
c oxidase. This fi nding clearly demonstrated a linkage between the effects 
of mutations in mitochondrial tRNA genes and the steady-state level of 
nuclear-encoded proteins in mitochondria. Alzheimer's disease (AD) is a 
fatal progressive neurodegenerative disorder whose etiology is unkown 
until now. Mitochondria may play a crucial role in the pathogenesis of AD. 
Chou and his colleagues analyzed the differential mitochondrial protein 
profi le in the cerebral cortices of 6-month-old male 3 × Tg-AD (which har-
bor mutations in three human transgenes) and non-transgenic mice. Cer-
tain proteins which involved in a wide variety of metabolic pathways, such 
as the citric acid cycle, oxidative phosphorylation, pyruvate metabolism, 
and glycolysis, ect, were dysregulated in 3 × Tg-AD cortices. Interest-
ingly, these alterations in the mitochondrial proteome occurred before the 
development of signifi cant amyloid plaques and neurofi brillary tangles, 
indicating that mitochondrial dysregulation is an early event in AD [26]. 
In addition, the potential role of amyloid beta peptide (Aß)-mediated cell 
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death in AD has been extensively investigated both in transgenic animal 
models and in neuron culture models. Lovell et al quantitatively measured 
changes in mitochondrial proteins of primary rat cortical neuron cultures 
exposed to Aß [27]. Ten proteins that were signifi cantly altered in Aß-
treated cultures were identifi ed, including sodium/potassium-transporting 
ATPase, cofi lin, dihydropyrimidinase, pyruvate kinase and voltage-depen-
dent anion channel 1 (VDAC1). Elevations in the levels of proteins associ-
ated with energy production indicated that cells undergoing Aß-mediated 
apoptosis increased the synthesis of proteins essential for ATP production 
and effl ux in an attempt to maintain metabolic function. Another similar 
study with Aß was reported by Gillardon [28]. They analyzed proteome 
changes in synaptosomal fractions from Tg2576 mice that over-express 
mutant human amyloid precursor protein (K670N, M671L) and from their 
non-transgenic littermates. Altered expression of certain proteins, such as 
heat shock protein 70 and changes in the subunit composition of the re-
spiratory chain complexes I and III were identifi ed. They concluded that 
mitochondria are early targets of Aß aggregates, and that elevated Aß 
might impair mitochondrial functions, thus providing a self-amylifying 
toxic mechanism. Another comparative proteomic investigation about 
neurodegenerative diseases was reported by Fu [29]. The expression of 
mitochondrial proteins involved in mitochondrial membrane potential, 
ATP production, and neuronal cell death was down-regulated after treat-
ment of cerebellar granule neurons with bis(7)-tacrine. Thus, bis(7)-ta-
crine might be a benefi cial agent for the treatment of neurodegenerative 
diseases. Pienaar and coworkers conducted a behavioral and quantitative 
mitochondrial proteomic analysis on the effects of simvastatin on a rat 
model of neural degeneration. Twenty-four mitochondrial proteins were 
identifi ed in relative abundance after simvastatin treatment. Then they 
validated whether simvastatin was capable of altering sensorimotor func-
tion in a mitochondrial toxin-induced animal model. Rats were pre-treated 
with simvastatin for 14 days followed by a single unihemispheric injection 
of rotenone(a mitochondrial complex I inhibitor). The results showed that 
simvastatin improved motor performance in rotenone-infused rats. The re-
sults of behavioral and quantitative proteomic analysis are consistent and 
further exploration of these changes may identify promising bio-targets 
for degenerative disorders [30].



Multiple sclerosis (MS) is an infl ammatory neurodegenerative disease 
of the central nervous system that results in progressive physical and cog-
nitive disability. Broadwater et al utilized SELDI-TOF-MS to characterize 
the mitochondrial proteome in postmortem MS and control cortex. Peptide 
fi ngerprint mapping unambiguously identifi ed four proteins, including cy-
tochrome c oxidase subunit 5b (COX5b), the brain specifi c isozyme of 
creatine kinase, hemoglobin β-chain, and myelin basic protein (MBP), that 
could be used as neuroprotective therapeutic targets for MS [31].

As a whole, studies on the mitochondrial proteome of the nervous sys-
tem provide a broader insight on various fractions of brain and the same 
fractions under various physiological and pathological states. However, 
most of the investigations are currently based on animal models because 
of the diffi culty to obtain brain samples from humans. The results from the 
proteomics studies revealed that mitochondrial structural and functional 
alterations appear to play an important role in nervous system diseases.

1.3.2 CARDIOVASCULAR SYSTEM

Cardiovascular diseases have been the main “killer” in human beings, and 
thus, early diagnosis and treatment is imperative. Mitochondria are the 
major site of substrate oxidation in cardiomyocytes. Furthermore, oxida-
tive stress plays a key role in heart diseases, and mitochondria are consid-
ered a principle source and target of reactive oxygen species (ROS) [32]. 
ROS can damage cellular lipids, proteins, and DNA, thereby disrupting 
their normal functions. Several large-scale studies have systematically re-
ported some notable biological and medical insights into the mitochon-
drial proteome in the cardiovascular system as described below.

The ischemic heart is an important model for researchers studying the 
cardiovascular diseases. Until now, most of the fi ndings from compara-
tive mitochondrial proteomic studies were associated with the respiratory 
chains and energy metabolism in the ischemic heart. For example, Kim 
et al detected regional differences in protein expression levels from mi-
tochondrial fractions of control, ischemia-reperfusion (IR), and ischemic 
preconditioned (IPC) rabbit hearts [8]. In addition, Essop and colleagues 
investigated the alterations in the mitochondrial proteome in a mouse 
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model of obesity/type 2 diabetes. Several proteins that play role in mito-
chondrial energy metabolism, including ATP synthase D chain, ubiquinol 
cytochrome-C reductase core protein 1, and electron transfer fl avoprotein 
subunit alpha, were identifi ed to have changes in protein levels [33].

Mitochondria play a crucial role in the regeneration of antioxidants 
through the production of reducing equivalents and are responsible for the 
vast majority of ATP production within most cells and higher organisms. 
Hunzinger [34] employed a proteomics approach to investigate the role 
of ROS on bovine heart and identifi ed two specifi c N-formylkynurenine 
modifi cations of aconitase-2, which is an enzyme that plays an important 
role in mitochondrial aging. Additional investigations on these two modi-
fi cations might identify them as potential protein biomarker signatures for 
ROS. Serious and/or long-term ischemia will lead to heart infarction. It 
has been proposed that in ischemic preconditioning (PC) or pharmaco-
logical preconditioning, the GSK-3 (glycogen synthase kinase-3) inhibitor 
AR-A014418 will initiate signaling cascades that converges on mitochon-
dria and results in cardioprotection. Therefore, Wong et al utilized 2D-
DIGE coupled with Blue Native-PAGE to confi rm their hypothesis that 
PC and pharmacological preconditioning similarly altered mitochondrial 
signaling complexes III, IV, and V. The altered expression levels of elec-
tron transport complexes obtained from the above-mentioned study should 
impart important implications for the mechanism of cardioprotection [35].

In short, most of the mitochondrial proteomics studies in cardiovas-
cular diseases were associated with ROS. It is well known that ischemia 
and aging are the main causes of cardiovascular diseases, which can 
result in the release of ROS. Therefore, ROS are still a primary focus 
when researchers investigate cardiovascular disease. Targeting on ROS 
might be applicable to the treatment of many cardiovascular problems 
in the future.

1.3.3 CANCER AND HEMATOLOGICAL DISEASES

The mitochondrial proteome has altered expression levels and structures 
in cancer cells, as well as that in cells altered simulide when stimulated by 
various treatments (Table 2).
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Chevallet et al [36] employed a comparative study on the osteoscrcoma 
143B cell line and its Rho-0 counterpart (devoid of mitochondrial DNA). 
Quantitative differences were found between these cell lines in factors, 
such as the respiratory complexes subunits, the mitochondrial translation 
apparatus, mitochondrial ribosomal proteins, and the proteins with roles in 
the ion and protein import system. They also found that proteins involved 
in apoptosis control and import systems were differentially regulated in 
Rho-0 mitochondria. To identify proteins involved in a retrograde re-
sponse and their potential role in tumorigenesis, Kulawiec [37] conducted 
a comparative proteomic analysis using the two cell lines noted above 
and the parental cell line. They found that subunits of complex I and III, 
molecular chaperones, and a protein involved in cell cycle control were 
down-regulated and that inosine 5'-monophosphate dehydrogenase type 2 
(IMPDH2), which is involved in nucleotide biosynthesis, was up-regulat-
ed in ρ0 cells. Retrograde proteins identifi ed in these studies might be use-
ful as therapeutic targets due to their roles as potential tumor suppressors 
or oncogenes involved in carcinogenesis.

Several investigations on other tumor mitochondrial proteome were 
also conducted recently. Regarding breast cancer, Strong et al [38] identi-
fi ed differentially expressed proteins in the mitochondria of MCF-7 hu-
man breast cancer cells that were selected for resistance to adriamycin ac-
companied by verapamil. Those identifi ed proteins were mainly involved 
in apoptosis, heme synthesis, fatty acid oxidation, and oxidative phosphor-
ylation. The implications of these changes in protein levels are relevant to 
mechanisms of drug resistance. Craven [39] compared the mitochondrial 
proteome in VHL (von Hippel Lindau, a tumor suppressor gene)-defective 
RCCs (renal cell carcinomas), which were transfected with either a con-
trol vector or wild-type VHL. That study showed that the mitochondrial 
protein ubiquinol cytochrome c reductase complex core protein 2 was 
up-regulated and a form of septin 2 was down-regulated following VHL 
transfection. Septin 2 was up-regulated in 12/16 RCCs. Thus, increased 
expression of septin 2 is a common event in RCC, and protein modifi ca-
tion may also change the function of septin 2 in a subset of tumors. Zhao 
et al [40] incubated the LNCaP cell-line with sms (somatostatin)14/smsds 
and demonstrated that proteins with roles in apoptosis were both up-reg-
ulated (VDAC1, VDAC2) and down-regulated (PRDX2, TCTP). Sms/
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smsdx was believed to trigger the up-regulation of catalytic mitochondrial 
proteins and seemed to affect apoptosis-related proteins.

Only a few studies have reported the effects of hematological disease 
on the mitochondrial proteome. Yu et al [41] analyzed protein expression 
profi les of fractionated nuclei, mitochondria, crude endoplasmic reticulum, 
and cytosols of the NSC606985-induced apoptotic AML cell line NB4 cells 
using 2-DE combined with MALDI-TOF/TOF. They identifi ed 90 unique 
deregulated proteins that contributed to multiple functional activities includ-
ing DNA damage repair, chromosome assembly, and mRNA processing as 
well as biosynthesis, modifi cation, and degradation of proteins. More inter-
estingly, several oxidative stress-related proteins that were shown up-regu-
lated were localized in mitochondria, while proteins that were up-regulated 
with roles in glycolysis were mainly localized in the nuclei. Their discover-
ies shed new insights for systematically understanding mechanisms of the 
camptothecin-induced apoptosis. In our previous study, we investigated mi-
tochondrial proteome alterations in NHL Raji cells exposed to adriamycin. 
Our results showed that 34 proteins were down-regulated and 3 proteins 
up-regulated when the study group was compared with the control group. 
The differentially expressed proteins play roles in many cellular functions, 
including redox, DNA repair, cell cycle regulation, transporters and chan-
nels, and OXPHOS. Furthermore, HSP70, ABCB6, and PHB identifi ed in 
this study may be closely related to chemoresistance, and this potentially 
serving as chemotherapeutic targets for NHL [42].

Collectively, studies on mitochondrial proteomics will further investi-
gate into cancerous biological behavior and mechanisms of antineoplastic 
agents. Subsequently, improved diagnosis, and treatment methods, and 
new treatment targets will likely be obtained.

1.3.4 OTHER DISEASES

Mitochondrial proteomics also revealed a number of significant findings 
in other diseases, such as hepatopathy, placenta changes, and skeleton 
muscle disease.

The liver is an important organ that has an abundance of mitochon-
dria. Ruepp [43] investigated the effects of acetaminophen (APAP) in the 



liver on the proteomic level and found that chaperone proteins HSP10 and 
HSP60 were readily decreased by half in mitochondria at different doses 
of APAP. The decrease of ATP synthase subunits levels and β-oxidation 
pathway proteins indicated a loss of energy production. Douette and co-
workers [44] compared mitochondrial protein patterns in wild-type and 
steatosis-affected liver and identifi ed 58 proteins exhibiting signifi cantly 
different levels in these two samples. Interestingly, major proteins that 
regulate the generation and consumption of the acetyl-CoA pool were dra-
matically changed during steatosis. Furthermore, many proteins involved 
in the response to oxidative stress were also affected. Lee [45] assessed 
global protein expression profi les in term placentas from scNT (somatic 
cell-derived nuclear transfer)-derived and control animals. Forty-three 
unique proteins were identifi ed, including such proteins play critical roles 
in the apoptosis signaling pathways as 14-3-3 proteins were up-regulat-
ed in scNT-derived when compared to the Annexin V in control animals 
group. Their results suggested that placental insuffi ciency in scNT-derived 
placentas may be due to apoptosis, induced in part by the down-regulation 
of 14-3-3 proteins and the up-regulation of Annexin V. De Palma [46] 
investigated the hypoxia-induced changes of rat skeletal muscle and in-
dicated that proteins involved in the TCA cycle, ATP production, and 
electron transport are down-regulated, whereas glycolytic enzymes and 
deaminases involved in ATP and AMP production were up-regulated. The 
up-regulation of the hypoxia markers hypoxia inducible factor 1 (HIF-
1α) and pyruvate dehydrogenase kinase 1 (PDK1) suggested that in vivo 
adaptation to hypoxia requires an active metabolic switch. Eccleston et al 
hypothesized that chronic exposure to a high fat diet (HFD) would modify 
the liver mitochondrial proteome, which might ultimately compromise mi-
tochondrial function. Using two-dimensional isoelectric-focusing (IEF)/
SDS-PAGE, 22 proteins which played roles of oxidative phosphorylation, 
lipid metabolism, sulfur amino acid metabolism, and chaperone proteins, 
showed altered levels as a consequence of the HFD. These proteomic stud-
ies were complemented by measuring mitochondrial ROS production and 
assessing the impact of a HFD on the levels of two key enzymes involved 
in maintaining tissue NO: arginase1 and endothelial nitric oxide synthase 
(eNOS) [47].
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Alves [48] studied the infl uence of lifestyle on the aging alterations 
in skeletal muscle mitochondrial proteins with 2-DE combined MALDI-
TOF/TOF. Their results confi rmed that certain mitochondrial proteins, 
particularly those play role in the citric acid cycle and as OXPHOS com-
ponents, showed increased carbonylation. The data obtained indicated that 
lifestyle was a key modulator for preventing the expression and function-
ality of aging-induced proteins in mitochiondria.

Overall, there is already considerable information regarding the impor-
tant role of mitochondria in the regulation of apoptosis, energy metabolism, 
and electron transfer. Mitochondrial proteomics have been performed in 
various fi elds and have gained considerable achievements. Mitochondrial 
proteomics are currently the most popular area of subcellular proteomics 
being investigated.

1.4 CHALLENGES

Proteomic techniques are becoming more and more advanced established. 
However, the study of proteins is not similar to that of DNA and RNA. 
First, proteins have more complicated two- and three-dimensional struc-
tures, and second, proteins cannot be amplified like DNA. Protein struc-
ture can be easily altered, but cannot be easily detected if the amount is too 
small. As far as the mitochondrial proteome is concerned, many questions 
remain unresolved.

1. The isolation and purification of mitochondria: At present, the 
well-recognized method for isolating mitochondria from tissues or 
cells is Taylor's classic method, which uses sucrose density gra-
dient centrifugation [3]. However, this method requires ultracen-
trifugation and is time-consuming. Many efforts have been made 
to improve Taylor's method [49,50]. Furthermore, special kits for 
mitochondria isolation have been put onto the market that do not 
require ultracentrifugation and are more time-efficient. The purity 
of the mitochondria isolated by these kits has been shown to be 
fairly good [51].



2. Limitations of 2-DE: 2-DE is not good for solving many problems, 
such as how to remove high abundant proteins or how to isolate 
proteins with extreme alkalinity or acidity. With regard to mito-
chondria, a large proportion of the proteins have an extreme alka-
line isoelectric point (pI). As a result, they are unable to be resolved 
by isoelectric focusing due to endo-osmotic effects upon the pH 
gradient [12]. In fact, some proteins have a pI that is too alkaline to 
be visible on typical wide range (pH 3-10) immobilized pH gradi-
ent (IPG) strips. For example, the pI of cytochrome c is 10.3 [13]. 
Although 2-DE is a powerful instrument, for this purpose, it still 
needs further improvement or replacement by other more effective 
techniques.

3. The limitation of bioinformatic tools and the mitochondrial data-
base: To meet the bioinformatic requirements of large-scale pro-
teomic studies, many researchers have tried to use series-based 
attempts to overcome the shortcomings of single proteomic tech-
niques. White and his colleagues use five parallel methodologi-
cal approaches, ((i) peptide-centric 1-DLC, (ii) peptide-centric 
2-DLC, (iii) protein-centric 1-DLC, (iv) protein-centric 2-DLC, 
and (v) subfractionated mitochondria) to improve the coverage of 
the partially annotated rabbit mitochondrial proteome prior to mass 
spectrometry. They found that the overall coverage of the cardio-
myocyte mitochondrial proteome was improved by this parallel 
approach where the total number of nonredundant peptides or pro-
teins was nearly 2 fold and more than 1.5-fold, respectively, greater 
than that by any single technique. They assumed that observation 
of proteins across multiple technologies improves the likelihood 
of true mitochondrial localization [52]. Furthermore, for the ho-
mologous proteins and redundant entries in the sequence database, 
one of the challenges in protein identification is that many peptides 
can be matched to several different proteins [53]. It would be help-
ful to use more than one database search engine when analyzing 
complex protein mixtures from the same raw data [54]. However, 
manual comparison and analysis of large database search results 
are laborious and time-consuming. Furthermore, most of these 
tools can utilize data from only a few database search engines, and 
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currently, there are no free tools that could be used to combine 
protein identification results from paragon with results from 
other search engines. Thus, it is necessary to develop fast, ac-
curate, and easy-to-use tools to integrate and compare protein 
identification results.

The insuffi ciency of mitochondrial databases is another problem. The 
fi rst attempt to build a 2-DE database of the mitochondrial proteome was 
performed by Rabilloud [55]. However, that database was considered both 
incomplete and ineffi cient. Now, a large amount of new data has been 
added into databases such as SWISS-PROT, NCBI, MITOMAP, mtDB, 
hmtDB, MitoP2, MigDB, and MitoProteome [56-58]. MitoP2 is the most 
comprehensive database for the mitochondrial proteome and includes a 
more complete set of these mitochondrial proteins for human (624), mouse 
(615), and yeast (522) for each of these organisms respectivly [58]. How-
ever, due to the emergence of this new subject, the databases are still very 
insuffi cient and require more exploration for enrichment.

4. Clinical applications: Many studies on the mitochondrial proteome 
have been reported, and how to utilize the findings in the clinic 
to gain the maximum benefits is still a large problem. Only a few 
of identified biomarkers have been currently used by clinicians as 
diagnostic and/or prognostic factors [59,60]. Novel biomarkers 
identified by proteomics can be developed for increased preci-
sion in diagnosis, therapy sensitivity, progression, and prognosis 
evaluation of disease. Information on bioinformatics obtained from 
proteomic analyses is still scarce. These challenges have not been 
overcome by the existing methods and they have become a limi-
tation to further advancement. Understanding how mitochondrial 
proteins function together in pathways and complexes is still a sig-
nificant challenge. Many biomarkers found in proteomic studies 
were conformed to be involved in various mitochondrial-associat-
ed signaling pathways, including apoptosis, cell cycle, and DNA 
repair [61,62]. Many validation tests using methods such as RNAi, 
protein-protein interaction mapping, and computational predic-
tions should be linked to the future investigations [63,64].



Standardizing these current proteomic experiment in terms of sample 
collection, storage and processing as well as bio-informatics and statistical 
analysis between various centers is serious necessary [65]. Future perspec-
tives will focus on the clinical applications of these biomarkers to improve 
diagnostic accuracy and prognostic precision. Thus, more intimate, repeat-
able, and verifi able experiments are eagerly awaited.

1.5 CONCLUSIONS

The emergence of comparative proteomics enables us to investigate the 
mitochondrial proteome in a more comprehensive and effective manner. 
The results of mitochondrial proteomics provide a better understanding 
of the pathogenesis associated with mitochondria and generate promising 
therapeutic targets. However, these novel findings are most unlikely to 
completely reflect the true state of mitochondria because some biological 
information may be lost or altered during the course that mitochondria are 
isolated from the cell. Moreover, the mitochondrial proteome alterations 
in animal models may differ from those of human. Therefore, more ef-
forts are needed to look at the validation across species carefully. Valida-
tion and utilization of clinically associated proteomic biomarkers would 
be helpful to the diagnosis, effective treatment, and prognosis evaluation 
of mitochondria-mediated diseases. Thus, the formulation of personalized 
medicine may become a reality in the future. This is an open-ended explo-
ration, and more achievements are anticipated in the near future.
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CHAPTER 2

STUDIES OF COMPLEX BIOLOGICAL 
SYSTEMS WITH APPLICATIONS TO 
MOLECULAR MEDICINE: THE NEED 
TO INTEGRATE TRANSCRIPTOMIC 
AND PROTEOMIC APPROACHES

ELENA SILVESTRI, ASSUNTA LOMBARDI, PIETER DE LANGE, 
DANIELA GLINNI, ROSALBA SENESE, FEDERICA CIOFFI, 
ANTONIA LANNI, FERNANDO GOGLIA, AND MARIA MORENO

2.1 INTRODUCTION

Genomic and proteomic data analyses have proven to be essential for an 
understanding of the underlying factors involved in human disease and for 
the discovery of diagnostic biomarkers, as well as for the provision of fur-
ther insights into the metabolic effects mediated by signaling molecules.

All classes of biological compounds, from genes through mRNA to 
proteins and metabolites, can be analyzed by the respective “omic” ap-
proaches, namely, genomics, transcriptomics, proteomics, or metabonom-
ics. Such an “omic” approach leads to a broader view of the complex 
biological system, including the pathology of diseases. Indeed, while the 

http://dx.doi.org/10.1155/2011/810242


data obtained from genomics may explain the disposition of diseases (i.e., 
increased risk of acquiring a certain disease), several other mechanisms 
that are not gene mediated may be involved in the onset of disease. More-
over, a single gene can be processed to result in several different mRNAs 
or proteins, which directly determine different cellular functions. Varia-
tions in metabolite fl uxes, which may be taken as the downstream result of 
changes in gene expression and protein translation, may be expected to be 
amplifi ed relative to changes in the transcriptome and proteome. However, 
time-dependent measurements and determinations of metabolite content at 
a single time-point can be misleading as these fl uxes vary quickly. There-
fore, while genomics/transcriptomics enables assessments of all potential 
information, proteomics enables us to assess the programs that are actu-
ally executed, and metabolomics will mostly display the results of such 
executions.

In the postgenomic era, functional analysis of genes and their products 
constitutes a novel and powerful approach since the expression levels of 
multiple genes and proteins can thereby be analyzed simultaneously, in both 
health and disease (Figure 1). Among the techniques used in functional ge-
nomics, both DNA microarrays [1–3] and classical and ongoing proteomic 
approaches (fi nalized to protein separation and identifi cation) [4–6] hold 
great promise for the study of complex biological systems and have appli-
cations in molecular medicine. These technologies allow high-throughput 
analysis as they are complementary to each other, and they may lead to 
a better understanding of the regulatory events involved in physiological, 
and disease, processes. Proteins are excellent targets in disease diagnostics, 
prognostics, and therapeutics. Consequently, proteomic approaches (such 
as two-dimensional gel electrophoresis (2D-E), two-dimensional liquid 
chromatography (2-DL), and mass spectrometry (MS)), which allow the 
simultaneous measurement and comparison of the expression levels of hun-
dreds of proteins, represent powerful tools for (a) the discovery of novel 
hormone/drug targets and biomarkers and (b) studies of cellular metabolism 
and protein expressions [7, 8]. Increasingly, proteomic techniques are being 
adopted—in particular, to avoid the limitations inherent in the more classical 
approaches—to solve analytical problems and obtain a more comprehen-
sive identifi cation and characterization of molecular events associated with 
pathophysiological conditions (Figure 1).
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FIGURE 1: Categories and potential applications of proteomics and benefits of integration 
of proteomics and transcriptomics in the study of complex biological systems.

In this paper, we will discuss a variety of mainly recent transcriptomic- 
and proteomic-based studies that have provided a comprehensive mecha-
nistic insight into two very complex biological phenomena, namely, age-
associated muscle sarcopenia and thyroid-hormone signaling. Moreover, 
as mitochondria are severely affected during ageing and it is generally 
believed that dysfunctions of mitochondria also cause ageing and muscle 
sarcopenia, we will also discuss proteomic analysis of the alterations in rat 
skeletal muscle mitochondria caused by ageing.

2.2 AGEING SARCOPENIA

Ageing, one of the most complex biological phenomena, is a multifaceted 
process in which several physiological changes occur at both the tissue 



and the whole-organism level. Indeed, the age-associated decline in the 
healthy functioning of multiple organs/systems leads to an increased in-
cidence of, and mortality from, diseases such as type II diabetes mellitus, 
neurodegenerative diseases, cancer, and cardiovascular disease [9].

One of the major engagements of gerontology is the understanding of 
the complex mechanisms involved in ageing at the molecular, cellular, 
and organ levels that would facilitate our understanding of age-related dis-
eases. Research in this area has accelerated with the application of high-
throughput technologies such as microarrays. To judge from such studies, 
several metabolic pathways are affected during ageing, and the picture 
becomes even more complex when we realize that most of them are inter-
connected.

Sarcopenia, the age-related decline in skeletal muscle mass and 
strength, is a major complication in the elderly [10, 11]. Since skeletal 
muscle represents the most abundant tissue in the body, fi ber degeneration 
has severe consequences for posture, movement, the overall integration 
of metabolism, and heat homeostasis [12]. Although various metabolic 
and functional defects in ageing muscle have been described over the last 
decade, senescence-related muscle wasting is not well understood at the 
molecular and cellular levels. Consequently, no effective treatment has yet 
been developed to counteract age-related fi ber degeneration [13].

Over the last decades, an attractive approach to the understanding of 
the molecular mechanisms involved in sarcopenia has been to screen all 
genetic pathways at one time, by the use of full-genome oligonucleotide 
chips, as well as the entire protein complement, by the use of using pro-
teomic tools. These approaches, when applied together to the multifacto-
rial muscle-wasting pathology observed in aged fi bers, have allowed the 
identifi cation of a variety of molecular and cellular changes. These include 
increased oxidative stress, mitochondrial abnormalities, disturbed micro-
circulation, hormonal imbalance, incomplete ion homeostasis, denerva-
tion, and impaired excitation-contraction coupling, as well as a decreased 
regenerative potential (see, Sections 2.1 and 2.2). In addition, altered post-
translational modifi cations, such as tyrosine nitration, glycosylation, and 
phosphorylation, were recently described as occurring in an age-related 
manner in numerous skeletal muscle proteins (see, Section 2.3).
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2.2.1 TRANSCRIPTOMIC ANALYSIS PERTAINING TO AGEING 
SKELETAL MUSCLE

Knowledge of differential mRNA expressions (i.e., the transcriptome) 
constitutes the first essential level of information when studying integrat-
ed cell functions and cell-specific gene-expression profiles. Since the de-
velopment of DNA microarray technology, it has been possible to survey 
thousands of genes in parallel, thereby obtaining information regarding 
transcriptional changes on a global scale. Such an approach has been used 
to study the transcriptional alterations induced by ageing both in rodent 
models and in humans. Ageing-related transcriptomic studies have been 
performed both on home-spotted microarrays containing about 4000–6000 
transcripts [14–16] and on commercial Affymetrix microarrays with from 
12000 [17, 18] to about 54000 [19–26] transcripts on each array.

Concerning studies on humans, the design commonly used involved a 
cross-sectional comparison of young and elderly healthy individuals, with 
about eight individuals maximum per group, or an analysis of individuals 
across an age-range. In these studies, several pathways were highlighted 
by genes that were differentially expressed between young (19–29 years) 
and elderly (65–85 years) individuals [14], including genes involved in 
energy metabolism, the cell cycle, signal transduction, and DNA repair 
[19–22].

Biological pathways found to be changed with age in human skeletal 
muscle are listed in Table 1 and schematized in Figure 2. They include 
genes involved in the mitochondrial electron transport chain, cell cycle, 
and extracellular matrix. Zahn et al. [21], by comparing the transcriptional 
profi le of ageing in muscle with previous transcriptional profi les of ageing 
in the kidney [22] and brain [17], found a common signature for ageing 
in these diverse human tissues. This common ageing signature consists 
of six genetic pathways; four display increased expression (genes in the 
extracellular matrix, genes involved in cell growth, genes encoding fac-
tors involved in complement activation, and genes encoding components 
of the cytosolic ribosome) and two display decreased expression in the 
aged muscle. These results indicate that those pathways, but not necessar-
ily individual genes, are common elements in the age-related expression 



changes among different tissues [21]. This may imply that in addition to 
tissue-specifi c effects, a common ageing signature may be found in any 
tissue that refl ects the age of the whole organism. This could have major 
implications for human epidemiological studies, for which frequently only 
blood is available.

TABLE 1: Summary of the models used and of the major findings obtained by applying 
microarray technologies to the study of ageing skeletal muscle.
Authors Experimental model Number of 

analyzed genes
Identified affected pathways

Mouse

Lee et al., 
1999 [25]

Studied tissue: aged skeletal 
muscle.

6347 Stress response, energy me-
tabolism.

Rat

Sreekumar 
et al., 2002 
[28]

12-months-old Sprague-
Dawley rats. Studied tissue: 
gastrocnemius muscle.

800 Energy metabolism, signal 
transduction, stress response, 
glucose/lipid metabolism, and 
structural/contractile function.

Altun et al., 
2007 [29]

4- and 30-months-old rats.
Studied tissue: gastrocnemius 
muscle.

6240 Redox homeostasis, iron load, 
regulation of contractile pro-
teins, glycolysis, and oxidative 
phosphorylation.

Lombardi 
et al., 2009 
[26]

3- and 24-months-old rats.
Studied tissue: gastrocnemius 
muscle.

1176 Energy metabolism, mitochon-
drial pathways, myofibrillar 
filaments, and detoxification.

Human

Welle et al., 
2003 [23]

21–27 yr of age and 67–75 yr 
of age.Studied tissue: vastus 
lateralis muscle.

44 000 Cell cycle/cell growth, inflam-
mation, signal transduction, 
protein metabolism, transcrip-
tion, stress response/DNA 
repair, energy metabolism, and 
hormonal.

Welle et al., 
2004 [19]

20–29 yr of age and 65–71 yr 
of age, women.Studied tis-
sue: vastus lateralis muscle.

1000 Stress response/DNA repair, 
energy metabolism.

Zahn et al., 
2006 [21]

16 and 89 yr of age. Studied 
tissue: skeletal muscle.

54 675 Electron transport chain, cell 
cycle/cell growth, extracellular 
matrix, chloride transport, com-
plement activation, ribosomes.
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FIGURE 2: Integrated overview of the main ageing/T3-induced transcriptomic and 
proteomic alterations occurring in mammalian skeletal muscle. Schematic representation 
of the common events and mechanisms underlying the response of skeletal muscle to either 
ageing or T3 according to data obtained from cDNA microarray/proteomic-based studies 
in various mammalian models of ageing and thyroid state (mouse, rat, and human) (for 
details, see text and Tables 1, 2, 3, and 4).



Transcriptomic studies have been performed in laboratory animals us-
ing commercially available microarrays. As in humans, the main design 
used for measuring changes related to chronological age is a comparison 
between young and old individuals. These studies are usually performed 
on inbred strains, and so the variation between individual animals is small-
er than among human individuals. The range of tissues studied includes 
liver, heart, skeletal muscle, aorta, and brain. Across all species, and in 
most experimental designs there is an infl uence of gender on ageing fea-
tures and gene expressions [24]. Biological pathways found to be changed 
with age in rodent (mouse and rat) skeletal muscle are listed in Table 1.

Transcriptomic analysis of gastrocnemius muscle from 5- and 
30-month-old male C57BL/6 mice revealed that ageing resulted in a dif-
ferential gene expression pattern [25]. Of the genes that increased in ex-
pression with age, 16% were mediators of stress responses, including heat 
shock-response genes, oxidative stress-inducible genes, and DNA dam-
age inducible genes (Table 1). Genes involved in energy metabolism were 
downregulated with ageing, including genes associated with mitochon-
drial function and turnover. This suppression of metabolic activity was ac-
companied by a concerted decline in the expressions of genes involved in 
glycolysis, glycogen metabolism, and the glycerophosphate shunt (Table 
1). Ageing was also characterized by the induction of genes involved in 
neuronal growth and large reductions in the expressions of biosynthetic 
enzymes.

We recently performed a transcriptomic study on gastrocnemius mus-
cle from rats aged 3 months (young) and 24 months (old) via a DNA ar-
ray [26]. Transcript levels for genes associated with cellular damage were 
elevated in the older muscle, while transcript levels for genes involved in 
energy metabolism were reduced with age. Among the biological classes 
of transcripts signifi cantly decreased by ageing, there were transcription 
factors as well as ribosomal proteins, indicative of a lower transcription/
translation activity in old than in young skeletal muscle (Table 1). In agree-
ment with previous microarray studies on the skeletal muscles of humans 
and rodents [18, 25, 27], we found that ageing is accompanied by a decline 
in the expressions of genes associated with energy-metabolism functions 
[26] (Table 1). Alterations in oxidative phosphorylation were revealed by 
decreased expression levels of cytochrome c oxidase, ATPase subunit, and 
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carbonic anhydrase III [26]. The capacity of mitochondria to import and 
oxidize fatty acids would presumably be impaired since the mRNA levels 
for acylCoA synthase as well as carnitine palmitoyl transferase 1 (CPT 
1) were reduced during ageing. Downregulation of the AK1 isoform of 
adenylate kinase [26] points toward decreased AMP production and hence 
decreased activity of AMP-activated protein kinase (AMPK), an inducer 
of glucose and fatty acid uptake and fatty acid oxidation. Gastrocnemius 
muscle from the old rats revealed increased expressions of various factors 
involved in muscle differentiation toward the “slow” phenotype (type I; 
oxidative fi bers), including p27kip and muscle LIM protein (MLP) [26] 
(Table 1). As a whole, the above data support an ageing-induced shift to-
wards moderate fat burning.

Ageing has been found to increase the mRNA levels of scavengers of 
free radicals such as phospholipids hydroperoxide glutathione peroxidase 
and the cytosolic superoxide dismutase Cu/Zn SOD (SOD1). In addition, 
14-kDa ubiquitin-conjugating enzyme E2 mRNA (a component of the 
complex that adds ubiquitin to target proteins, making them capable of de-
struction by the proteasome machinery) and both proteasome subunit C5 
and proteasome delta subunit precursor were downregulated in aged mus-
cle. Since the proteasome is the major proteolytic complex responsible for 
the selective degradation of oxidized proteins, these data point toward a 
defective action of the proteasome. With regard to the lysosomal pathway 
of protein breakdown, cathepsin L (which acts upstream of the ubiquitin-
proteasome system) was also downregulated in aged muscle [26], once 
again supporting a decline in proteolysis during ageing.

The above studies have been successful in elucidating some of the 
transcriptional changes that occur with age in muscle, as well as in other 
tissues, and in providing insights about age-related changes common to 
animals with different lifespans.

2.2.2 PROTEOMIC ANALYSIS PERTAINING TO AGEING 
SKELETAL MUSCLE

Proteomic analysis has proved valuable in informing our understanding 
of the molecular mechanisms involved in the ageing process through the 
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identification both of changes in protein levels and of various posttransla-
tional modifications such as phosphorylation [30], nitration [31, 32], and 
glycosylation [33] that progress with age. In order to identify novel bio-
markers of age-dependent skeletal muscle sarcopenia, mass spectrometry-
based proteomics has been applied to the study of global muscle protein 
expression patterns. Mass spectrometric peptide fingerprinting, chemi-
cal peptide sequencing, electrophoretic mobility comparison using inter-
national 2-D gel databanks, and/or large-scale immunoblot analysis are 
among the most frequently utilized techniques.

Over the last years, several proteomic studies have catalogued the ac-
cessible skeletal muscle protein complement from various species and 
also investigated changes in protein expression levels in the sarcopenia of 
old age. The data obtained so far have furnished databanks that form an 
important prerequisite for future large-scale proteomic investigations into 
muscle ageing.

Table 2 lists proteomic studies on age-related changes in skeletal mus-
cle in rodent and human models of ageing. Although the lists of individual 
proteins found to be affected by the ageing process differ considerably be-
tween individual proteomic surveys, the main trend of the altered proteins 
involved in energy metabolism, cellular signaling, the stress response, cy-
toskeleton, and contraction shows agreement among the various studies. 
Gelfi  et al. [34] performed a quantitative differential analysis of muscle 
protein expression in elderly and young subjects using a 2-D DIGE ap-
proach. The main difference observed in the elderly group included down-
regulation of regulatory myosin light chains, particularly the phosphory-
lated isoforms, a higher proportion of myosin heavy chain isoforms 1 and 
2A, and enhanced oxidative and reduced glycolytic capacities.

Proteomic profi ling of rodent muscle during ageing has been per-
formed in several studies, resulting in the identifi cation of a large cohort 
of sarcopenic biomarkers (for a schema, see Figure 2).

Age-dependent differential regulation in rodent muscle has been iden-
tifi ed for several glycolytic and mitochondrial enzymes, which are im-
portant for energy metabolism. The glycolytic enzymes triosephosphate 
isomerase, glyoxalase I, and -enolase were downregulated in aged mus-
cle. Other features indicating perturbation of energy metabolism were 
downregulation of creatine kinase, of pyruvate kinase, and of the NADH-
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shuttle glycerol 3-phosphate dehydrogenase. At the mitochondrial level, 
key enzymes such as isocitrate dehydrogenase, cytochrome c oxidase, 
ATP synthase  subunit, and pyruvate dehydrogenase were all decreased 
in ageing muscle whereas there was an upregulation of aldehyde dehydro-
genase [26, 29, 35–38].

Differential proteomic analyses have revealed that ageing is associated 
with perturbations of the myofi brillar network [26, 29, 35–38]. Notably, 
there is a downregulation of several isoforms of myosin long chain and of 
alpha-actin, as well as a differential expression of their major regulators. 
In contrast to the downregulation of myofi brillar components, old muscles 
display upregulation of many proteins of the intermediate fi lament, mi-
crotubules and microfi lament cytoskeleton, among which are B-tubulin, 
desmin, and gelsolin. This suggests a mechanism affecting the cytoskel-
eton that compensates for perturbations in myofi brillar structure and so 
prevents extensive damage to the myofi bers. Muscle ageing is also as-
sociated with the differential expression of enzymes implicated in the de-
toxifi cation of cytotoxic products. The cytoplasmic Cu/Zn superoxide dis-
mutase (SOD1) and H ferritin isoform, as well as the levels of glutathione 
transferase and mitochondrial aldehyde dehydrogenase, were found to be 
increased in older rats, while evidence of age-associated protein misfold-
ing was provided by the upregulation of molecular chaperones (including 
HSP 27 and disulfi de isomerase ER60) [26, 29, 35–38].

Most of the proteins identifi ed by differential proteomics were previ-
ously unrecognized in ageing skeletal muscle. Their identifi cation has not 
only provided further insight into the potential mechanisms of ageing, but 
may lead to the development of biomarkers of sarcopenia [26, 29, 35–38].

2.2.3 PROTEOMIC ANALYSIS PERTAINING TO 
AGEING SKELETAL MUSCLE: ANALYSES OF PROTEIN 
PHOSPHORYLATION, NITRATION, AND GLYCOSYLATION

Since posttranslational modifications are key modulators of protein struc-
ture, function, signaling, and regulation, various subdisciplines of pro-
teomics have emerged that focus on the cataloguing and functional charac-
terization of proteins with extensively modified side chains [57]. In aged 



skeletal muscle, proteins undergo considerable changes in their posttrans-
lational modifications [58]. These include, among others, phosphoryla-
tion, nitration, and glycosylation. Phosphorylation represents one of the 
most frequent peptide modifications [59], and abnormal phosphorylation 
is associated with various pathologies. A recent phosphoproteomic survey 
of aged muscle detected increased phosphorylation levels for myosin light 
chain 2, tropomyosin α, lactate dehydrogenase, desmin, actin, albumin, 
and aconitase [30]. In contrast, decreased phospho-specific dye binding 
was observed for cytochrome c oxidase, creatine kinase, and enolase. 
Thus, ageing-induced alterations in phosphoproteins appear to involve the 
contractile machinery and the cytoskeleton, as well as cytosolic and mito-
chondrial metabolism.

The nitration of protein tyrosine residues represents an oxidative and 
important posttranslational modifi cation occurring under nitrative/oxi-
dative stress during biological ageing. Comprehensive proteomic stud-
ies have identifi ed an age-related increase in the nitration of numerous 
skeletal muscle proteins. These include enolase, aldolase, creatine kinase, 
tropomyosin, glyceraldehyde-3-phosphate dehydrogenase, myosin light 
chain, pyruvate kinase, actinin, actin, and the ryanodine receptor [31, 32]. 
The nitration of these essential muscle proteins may therefore be a signifi -
cant causative factor in the age-related decline in muscle strength [31, 32].

Glycosylation is one of the most frequent posttranslational modifi ca-
tions found in proteins, and it plays a central role in cellular mechanisms 
in both health and disease [60]. Oligosaccharide attachment represents a 
common protein modifi cation that infl uences the folding of the nascent 
peptide chain and the stability of glycoproteins, modifi es enzymatic activ-
ity, controls protein-secretion events, presents critical information about 
the cellular targeting of a newly synthesized protein, and provides spe-
cifi c recognition motifs for other proteins in cell-cell interactions [61]. The 
identifi ed muscle components belong mostly to the family of metabolic 
enzymes. They included glycolytic enzymes, such as pyruvate kinase, 
enolase, phosphoglycerate kinase, aldolase, glyceraldehyde-3-phosphate 
dehydrogenase, and phosphoglycerate-mutase, aconitase, carbonic anhy-
drase, and creatine kinase [33].

These data confi rm that the sarcopenia of old age represents a com-
plex neuromuscular pathology that is associated with drastic changes not 

42 Omics in Clinical Practice



Studies of Biological Systems and Molecular Medicine 43

only in the abundance, but also in the structure of key muscle proteins 
(Figure 2).

2.2.4 PROTEOMIC ANALYSIS PERTAINING TO AGEING 
SKELETAL MUSCLE MITOCHONDRIA

Analysis of the protein profile of mitochondria, and of the changes in it 
that occur with age, represents a promising approach to the unraveling of 
the mechanisms involved in ageing. Although the role of mitochondria 
was long thought to be restricted to an influence on fuel metabolism, the 
importance of the activity of these organelles has recently been extended 
to the regulation of developmental/ageing processes [62]. Mitochondria 
have their own genome (mt-DNA) and specific mechanisms for replica-
tion, transcription, and protein synthesis. However, in terms of protein 
composition they are “hybrid” organelles resulting from the coordinated 
expression of the nuclear and their own genome. A bidirectional flow of 
information allows the two kinds of subcellular compartments to commu-
nicate with each other under the control of metabolic signals and several 
signal-transduction pathways that function across the cell. These pathways 
are differentially regulated by environmental and developmental signals, 
and under patho/physiological conditions, they allow tissues to adjust 
their energy production according to different energy demands possibly 
modulating/altering the mitochondrial phenotype. It is now beyond doubt 
that mitochondria are severely affected by ageing, and it is generally be-
lieved that dysfunctions of mitochondria trigger key steps in the ageing 
process [62].

Mitochondrial proteomes (mitoproteomes) are currently under vigor-
ous investigation by way of both structural and comparative proteomics. 
In particular, we would like to emphasize the value of comparative pro-
teomics as a tool capable of providing us with valuable information on 
mitochondrial physiology and on the role of these organelles in ageing 
muscle. First, mitochondria can be highly purifi ed, leading to simplifi ed 
2D gels, which greatly facilitates the analysis and detection of less-abun-
dant proteins. Second, mitochondrial proteins are generally distributed 
across wide ranges of both pH and molecular mass on 2D gels, leading to 



accurate protein resolution with only a few protein-spot overlaps. Third, 
most of the mitochondrial membrane-protein complexes exhibit soluble 
subunits that can be analyzed on 2D gels even though the hydrophobic 
subunits aggregate. Various detection methods are already available that 
allow us to monitor quantitative changes in the proteome. Of these, 2-DE-
based methods appear quite promising, with isoelectric focusing (IEF), 
BN-SDS, and benzyldimethyl-nhexadecylammonium chloride (16-BAC)-
PAGE at the forefront. However, application of IEF is restricted to proteins 
that are not highly hydrophobic or have no extreme isoelectric points. In-
deed, by the use of classical 2D-E it is diffi cult to detect very acidic or very 
basic proteins or to distinguish small changes in the expressions of weakly 
expressed proteins. On the other hand, BN-SDS-PAGE deals effi ciently 
with even hydrophobic membrane proteins, although some compromises 
in resolution have to be made [63]. Another advantage of the BN-PAGE 
system is the conservation of protein-protein interactions, enabling simul-
taneous elucidation of multimeric and multiprotein assemblies of soluble 
and membrane proteins [64]. Such a procedure might be a viable alterna-
tive to other methods, such as yeast two-hybridization.

Comparative transcriptomic and proteomic studies have been initiated 
to determine global changes in mitochondria from young versus aged skel-
etal muscle [26, 39, 41, 62, 65–68]. Native-difference gel electrophoresis 
(DIGE) is an approach that facilitates sensitive quantitative assessment 
of changes in membrane and soluble proteins. Recently, O’Connell et al. 
[68] analyzed the mitochondria-rich fraction from aged rat skeletal muscle 
by DIGE. This proteomic analysis showed a clear age-related increase in 
key mitochondrial proteins, such as NADH dehydrogenase, the mitochon-
drial inner membrane protein mitofi lin, peroxiredoxin isoform PRX-III, 
ATPase synthase, succinate dehydrogenase, mitochondrial fi ssion protein 
Fis1, succinate-coenzyme A ligase, acyl-coenzyme A dehydrogenase, po-
rin isoform VDAC2, ubiquinol-cytochrome c reductase core I protein, and 
prohibitin [68].

To gain deeper insights both into ageing mechanisms and into the re-
sulting mitoproteome alterations, mitochondria have been studied by the 
blue-native gel approach, both with respect to protein abundance and the 
supramolecular organization of OXPHOS complexes [26].
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The profi les obtained for muscle crude mitochondria from young and 
old rats—after detergent extraction with either dodecylmaltoside or digito-
nin, and subsequent BN-PAGE—have been reported by us within the past 
years [26]. The use of dodecylmaltoside allows individual resolution of the 
respiratory complexes. Our densitometric analysis revealed that gastroc-
nemius muscle mitochondria from old rats, versus those from young rats, 
contained signifi cantly lower amounts of complex I (NADH:ubiquinone 
oxidoreductase), V (FoF1-ATP synthase), and III (ubiquinol:cytochrome 
c oxidoreductase) (–35%, –40%, –25%, resp.). The same mitochondria, 
on the other hand, contained a signifi cantly larger amount of complex II 
(succinate: ubiquinone oxidoreductase) (+25%) and an unchanged amount 
of complex IV (cytochrome c oxidase, COX). The use of a combination 
of BN-PAGE and catalytic staining allowed us to detect reduced activity 
of all the complexes in ageing muscle. The observed reductions in the 
activities of respiratory complexes I, III, and V refl ected lower protein 
levels, but the reduction in complex II activity was associated with an 
increase in the amount of the same complex. To elucidate whether the age-
ing process also alters the functional/structural organization of the respira-
tory chain in terms of the assembly of supercomplexes, mitochondria were 
extracted using the mild detergent digitonin since this extensively retains 
inner mitochondrial membrane supercomplexes [69]. In both young and 
old mitochondria, monomeric complex I and dimeric complex III were 
signifi cantly reduced versus dodecylmaltoside solubilization. However, 
the missing amounts were found to be assembled in two major supercom-
plexes, a and b, and two minor ones, c and d, all within the molecular mass 
range of 1500–2100 kDA. The supercomplex profi le of the older rats was 
signifi cantly modifi ed, band a being less represented in the profi le than the 
heavier supercomplexes, such as bands c and d. A signifi cant increase was 
detected in the supramolecular assembly of respiratory chain complexes 
into respirosomes (each one being formed by complex I assembled with a 
dimeric complex III and a variable copy number of complex IV, represent-
ed by bands c and d). Possibly, this could be a compensatory mechanism 
that, in ageing muscle, is functionally directed towards substrate channel-
ing and catalytic enhancement advantaging. Indeed, mitochondrial oxida-
tive phosphorylation seems to be more effi cient in aged than in young 



skeletal muscle, since old rats exhibited an increased respiratory control 
ratio that was attributed principally to a reduction in the reactions able to 
dissipate the proton motive force not associated with ATP synthesis. This 
could be interpreted as a compensation for the reduced level and activity 
of F1F0-ATP synthase.

The above data point up the ability of skeletal muscle to face the con-
sequences of ageing in a metabolically economic way and highlight the 
occurrence of structural and metabolic adaptations. A comparison between 
these two studies [26, 68] each employing different proteomic approaches 
leads to the conclusion that beyond the expression/abundance changes in 
proteins, an insight can be obtained about the structural and functional 
heterogeneity in a given mitoproteome.

Another possible protein modifi cation in skeletal muscle mitochondria, 
possibly contributing to its functional decline with age, is carbonylation, 
which can be considered an oxidative modifi cation that may render a pro-
tein more prone to degradation. Feng et al. [42] recently identifi ed mito-
chondrial proteins that were susceptible to carbonylation in a manner that 
was dependent on muscle type (slow- versus fast-twitch) and on age. Car-
bonylated mitochondrial proteins were more abundant in fast-twitch than 
in slow-twitch muscle. Twenty-two proteins displayed signifi cant changes 
in carbonylation state with age, the majority of these increasing in their 
amount of carbonylation. Ingenuity pathway analysis revealed that these 
proteins belong to various functional classes and pathways, including 
cellular function and maintenance, fatty acid metabolism, and the citrate 
cycle. This study [42] provides a unique catalogue of promising protein 
targets deserving further investigation because of their potential role in the 
decline exhibited by ageing muscle. Since carbonylation is not repairable, 
this modifi cation may, however, be of special importance in directing the 
affected protein to the path toward degradation.

Of note, in view of the importance of the functional mitochondrial 
membrane compartmentalization, together with proteomic approaches, 
lipidomic ones would be desirable to gain further insight into the under-
standing of the modifi cation of lipids either as membrane components or 
energy store following aging processes.
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2.3 THYROID HORMONES AND THYROID STATES

Thyroid hormones [THs; 3,5,3',5'-tetraiodo-L-thyronine, otherwise known 
as thyroxine (T4), and 3,5,-triiodo-L-thyronine (T3)] are essential for the 
regulation both of energy metabolism and of development and growth in 
all vertebrates. In humans, the early developmental role of THs is vividly 
illustrated by the distinctive clinical features of cretinism, as observed in 
iodine-deficient areas. In adults, the primary effects of THs are manifested 
by alterations in metabolism. Even subclinical hyper- and hypothyroidism 
can have important consequences, such as atherosclerosis, obesity, and 
alterations in bone mineral density and heart rate [70, 71]. The effects in-
duced by THs in the regulation of metabolism include changes in oxygen 
consumption and in protein, carbohydrate, lipid, and vitamin metabolism. 
Hyperthyroidism is associated with an increase (calorigenic effect), while 
hypothyroidism is associated with a decrease in metabolic rate. Of particu-
lar note, is that the number and the complexity of the clinical features of 
hyperthyroidism and hypothyroidism emphasize the pleiotropic effects of 
THs on many different pathways and target organs. Although great efforts 
have been made to elucidate the signaling pathways underlying the phys-
iopathological effects of thyroid hormones, the network of factors and cel-
lular events involved, as well as the possible role of derivatives of THs, is 
complicated and incompletely understood, as is the ultimate effect of THs 
on tissue transcriptomes and proteomes.

2.3.1 THE COMPLEXITY OF ACTION OF THYROID 
HORMONES: AN OVERVIEW

Most thyroid-related, direct genomic actions leading to protein changes 
appear to be attributable to T3. The mechanism of action that has gained 
general acceptance for this iodothyronine involves the binding of specific 
nuclear receptors (TRs) to thyroid hormone response elements (TREs) in 
target genes [72]. Within the nucleus, TRs dimers (hetero- or homodimers) 
bind to TREs and modulate gene activity by either silencing or activating 



transcription by recruitment of either corepressor or coactivator complex-
es, depending on the absence or presence of thyroid hormone [73–78]. In 
mammals, two genes encoding TRs have been characterized, c-erb A and 
c-erb A [79–81], and these encode several proteins ( and  isoforms) 
with different binding properties and patterns of tissue expression. For 
example, c-Erb A1 is expressed across a wide range of tissues, while 
c-ErbA2 is found almost exclusively in the pituitary, where it inhibits 
thyrotrophin (TSH) - and -subunit gene transcription [82] by binding 
to negative TREs present on these genes [83, 84]. New information on the 
mechanisms of action of THs have been obtained from TR gene knockout 
(KO) and knock-in studies [85].

In terms of cellular effects, theories proposed so far to explain the ac-
tions of THs on metabolic rate also include mechanisms such as: uncou-
pling of oxidative phosphorylation, stimulation of energy expenditure by 
activation of Na+-K+ ATPase activity, and direct modulation by THs of 
transporters and enzymes located within the plasma membrane and mito-
chondria [86–89]. Moreover, T3-mediated nuclear gene expression leads 
in turn to coordinated and synergistic effects on the mitochondrial genome 
[90]. Actually, it has been postulated that T3’s actions on this genome are 
achieved through both an induction of nuclear-encoded mitochondrial fac-
tors and a direct binding of T3 to specifi c ligand-dependent mitochondrial 
transcription factors [90–94]. These last are nuclear-receptor homologs 
and are thought to act on a number of mt-DNA response elements [95]. 
Indeed, T3 directly regulates the mitochondrial genes encoding ATPase 
subunit six [96], NADH dehydrogenase subunit three [97], and subunits 
of cytochrome-c-oxidase [98].

The complexity of action of T3 is broadened by the existence of non-
genomic or TRE-independent actions, which have been extensively de-
scribed and are now accepted [99]. Importantly, these can be either in-
dependent or dependent on the binding of T3 to TRs. They occur rapidly 
and are unaffected by inhibitors of transcription and protein synthesis [90, 
93, 100–102]. Nongenomic actions of thyroid hormones have been de-
scribed at the plasma membrane, in the cytoplasm, and within cellular or-
ganelles ([100] and references therein). These actions include modulations 
of Na+, K+, Ca2+, and glucose transport, activations of PKC, PKA, and 
ERK/MAPK, and regulation of phospholipid metabolism via activations 
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of PLC and PLD [103], and they can be independent of the presence of 
nuclear TRs and mediated even by TH analogs [102]. For example, it has 
recently been shown that cytosolic TR can interact with the p85 subunit 
of PI3K and thereby activate the PI3K-Akt/PKB signaling cascade [99, 
104]. Moreover, it has been shown that THs activate the MAPK cascade 
and stimulate angiogenesis via their binding to integrin V3 [100]. Im-
portantly, it appears now to be well established that an interplay exists 
between the genomic and nongenomic actions when gene expression is 
regulated by the TR-T3 complex and the activity of the enzyme is modu-
lated by a nongenomic process [100].

2.3.2 TRANSCRIPTOMIC ANALYSIS PERTAINING TO THE 
ACTIONS OF THYROID HORMONES

Although the molecular actions of THs have been thoroughly studied, 
their pleiotropic effects are not well understood and appear to be medi-
ated by complex changes in the expressions of numerous, but still largely 
unknown, target genes in various tissues. DNA microarrays have been 
successfully used to identify T3-target genes in mouse, rat, and human 
tissues, cell lines, and tumors. Actually, pioneering systematic studies in 
the search for T3-target genes were performed by Seelig and coworkers as 
long ago as 1981 [105].

Feng et al. [44] fi rst applied cDNA-microarray technology to the study 
of the in vivo T3 regulation of hepatic genes in the mouse. They identifi ed 
new T3-target genes, the majority of which had not previously been re-
ported to be regulated by the hormone. Surprisingly, many of these target 
genes were negatively regulated. The identity of the genes indicated that 
multiple cellular pathways are actually affected by T3, including glyco-
genolysis, gluconeogenesis, lipogenesis, cell proliferation, apoptosis, the 
action of insulin, immunogenicity, and protein glycosylation.

Weitzel et al. [49] detected novel T3-target genes and identifi ed two 
T3-mediated gene-expression patterns after the administration of T3 to 
hypothyroid rats. In line with the long-known observation that T3 has pro-
found infl uences over mitochondrial biogenesis and metabolic balance, 
the authors reported that numerous genes implicated in metabolic path-



ways (ANT2, apolipoprotein AIV, HMG-CoA synthase, and ATP synthase  
subunit) are affected by T3, as also are genes associated with a wide 
variety of cellular pathways (encompassing translation, protein turnover, 
cell structure, and apoptosis-associated proteins). These observations gave 
support to the idea that alongside the “classical” pathway of T3-mediated 
gene regulation (involving thyroid hormone-receptor binding to TREs), 
there appears to be an additional pathway mediated by transcription fac-
tors (such as NRF-1 and PPAR) and coactivators (such as the PGC-1 
family of coactivators).

Flores-Morales et al. [45] verifi ed the effect of T3 on liver in mice 
with a targeted mutation in the TR gene. In accordance with the results of 
Weitzel [49], they reported that T3 regulates the expressions of function-
ally different sets of genes in temporally distinct ways. Importantly, using 
TR-/- animals they also defi ned a number of T3-responsive genes that are 
dependent on TR  in vivo, thereby opening the way for the use of similar 
experimental strategies to identify the contributions made by specifi c tran-
scription factors to the in vivo actions of multiple hormones and trophic 
factors.

Miller et al. [50] identifi ed genes involved in glucose metabolism, bio-
synthesis, transcriptional regulation, protein degradation, and detoxifi ca-
tion that were associated with T3-induced cell proliferation. Of particular 
signifi cance were the fi ndings that T3 rapidly suppresses the expressions 
of key regulators of the Wnt signaling pathway and that it suppresses 
the transcriptional downstream elements of the -catenin-T-cell factor 
complex.

With the aim of defi ning the molecular basis of the target-tissue pheno-
type related to the hereditary TR mutations causing resistance to thyroid 
hormone (RTH), Miller et al. [46] showed that in T3-target tissues such as 
cerebellum, heart, and WAT in animal models of both RTH and hyperthy-
roidism, T3 acts primarily to suppress gene expression, and that TR has 
a greater modulating effect in the heart than originally thought. Moreover, 
their comprehensive multitissue gene-expression analysis uncovered com-
plex multiple signaling pathways mediating the molecular actions of TR 
mutants in vivo. It also revealed some T3-independent, but mutant-depen-
dent, genomic responses contributing to those “changes-of-function” pres-
ent in TR mutants that are linked to the pathogenesis of RTH.
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Dong et al. [48] studied the molecular mechanisms involved in the re-
sponses shown by developing mice to disruptions in maternal thyroid-hor-
mone homeostasis. Among differentially expressed genes, Nr4a1 (nuclear 
receptor subfamily 4, group A, member 1), was upregulated by 3-fold in 
the hypothyroid juvenile mouse liver, while treatment of HepG2 cells with 
T3 resulted in its downregulation. A potential thyroid response element 
–1218 to –1188 bp upstream of the promoter region of Nr4a1 was identi-
fi ed and demonstrated to bind TR and TR receptors.

Notably, in recent years microarray approaches have been used to char-
acterize the effects of T3 on gene expression profi les in the postnatal de-
veloping brain as well as in the adult mouse/rat brain [106–108].

The effects of THs on gene expression profi les have been studied less 
intensively in human tissues than in animal above all because of the poor 
availability and accessibility of tissue. However, both in vitro [51, 52] 
and in vivo [53, 109] studies have been performed. Viguerie et al. [51], 
who showed that T3 regulates a large repertoire of genes in human adi-
pocytes, provided support for the effect of T3 on catecholamine-induced 
lipolysis, and suggested downregulation of SREBP1c as a link between 
hyperthyroidism and insulin resistance. Moreover, in accordance with 
other array studies, the data showed that thyroid hormone can affect cel-
lular processes such as signal transduction, apoptosis, and infl ammatory 
responses. Moeller et al. [52] identifi ed 91 T3-upregulated and 5 T3-
downregulated genes in skin fi broblasts from normal humans. Some of 
these genes were not previously known to be induced by T3, namely 
aldo-keto reductase family 1 C1-3, collagen type VI alpha 3, member 
RAS oncogene family brain antigen RAB3B, platelet phosphofructoki-
nase, hypoxia-inducible factor-1 alpha, and enolase 1 alpha. Importantly, 
these genes have a variety of regulatory functions in both development 
and metabolism.

Clèment et al. [53] studied the effects of thyroid hormone on human 
skeletal muscle in vivo. Their data not only helped to explain the effects 
of T3 on protein turnover and energy metabolism, but also revealed new 
putative mechanisms extending beyond the classic metabolic effects of 
the hormone, and importantly, added to our understanding of the permis-
sive effects of T3 on several cellular events (such as signal-transduction 
cascades, intracellular transport, and tissue remodeling).
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FIGURE 3: Overview of the main T3-induced transcriptomic and proteomic alterations 
occurring in mammalian liver. Schematic representation of the alterations in gene/protein 
expression underlying the response of liver to T3. Schematized are the main events 
and mechanisms underlying the actions of T3. Summarized are data obtained in cDNA 
microarray/proteomic-based studies in various mammalian models (mouse, rat, and 
human) (for details, see text and Tables 3 and 4).



Very recently, Visser et al. [54] examined the skeletal muscle transcrip-
tome in thyroidectomized patients being treated for differentiated thyroid 
carcinoma, and compared it between those who were off or on L-thyroxine 
replacement. They reported for the fi rst time that in humans as in animals, 
a large proportion of muscle genes (~43%) is signifi cantly downregulated 
by L-thyroxine treatment. They also reported signifi cant regulation of the 
primary transcripts of the noncoding RNAs miR-206 and miR-133b, which 
are key regulators in muscle differentiation and proliferation and may af-
fect numerous target genes. The potential of T3 to regulate miRs may be 
of particular importance since this level of control would add an additional 
layer of complexity by which T3 may regulate cellular processes.

Collectively, these studies (summarized in Table 3) have provided a 
cornucopia of novel information (schematized in Figures 2 and 3) on the 
regulation of transcription by THs. However, the intrinsic nature of these 
studies means that they provide no information concerning the status of 
the corresponding encoded proteins, and this is particularly relevant be-
cause of the infl uence of thyroid hormone on protein half-life.

2.3.3 PROTEOMIC ANALYSIS PERTAINING TO THE ACTIONS 
OF THYROID HORMONES

As stated above, overall T3 signaling can be modulated at many levels 
(i.e., the thyroid hormone-receptor isoforms present in the tissue, the 
DNA-response element in the regulated gene, the availability of receptor-
binding partners, interactions with coactivators and corepressors, ligand 
availability, mRNA and protein stabilities, protein translocation, and meta-
bolic interference) [72, 90–93]. Consequently, for a deeper investigation 
of the biological events modulated by T3 within target organs, a system-
atic analysis of the T3-induced changes in protein profile would appear to 
be appropriate.

We recently performed, on samples taken from rats in different thyroid 
states, high-resolution differential proteomic analysis, combining 2D-E 
and subsequent MALDI-ToF MS [55, 56]. These studies (summarized in 
Table 4) were the fi rst application of proteomic technology to the study 
of the modulations that T3 exerts in vivo over tissue proteins, and they 

58 Omics in Clinical Practice



Studies of Biological Systems and Molecular Medicine 59

provided the fi rst systematic identifi cation of T3-induced changes in the 
protein expression profi les of rat liver and skeletal muscle. In the liver, 
we unambiguously identifi ed 14 differentially expressed proteins involved 
in substrate and lipid metabolism, energy metabolism, detoxifi cation of 
cytotoxic products, calcium homeostasis, amino acid catabolism, and the 
urea cycle [55]. We found that T3 treatment affected the expressions of 
enzymes such as mitochondrial aldehyde dehydrogenase, -enolase, sor-
bitol dehydrogenase, acyl-CoA dehydrogenase, 3-ketoacyl-CoA thiolase, 
and 3-hydroxyanthranilate 3,4-dioxygenase. Interestingly, the fi rst two en-
zymes were upregulated, while the others were downregulated.

Our data were in accordance with the reported role played by thyroid 
hormone in the stimulation of the rate of ethanol elimination [110], and 
they provided further insight into the mechanisms actuated by T3 in that 
pathway. T3 is known to stimulate gluconeogenesis and glucose produc-
tion in the liver, thereby opposing the action of insulin on hepatic glucose 
production [111]. Our results extended this knowledge by showing that 
T3 signifi cantly enhances the level of -enolase, thereby participating in 
glycolysis and gluconeogenesis. In addition, T3 administration induced a 
signifi cant increase in the hepatic ATP synthase -chain content (in accor-
dance with the ability of T3 to stimulate ATP synthesis) and concomitantly 
reduced the expression level of electron transfer fl avoprotein -subunit 
(-ETF), and also that of the acyl-CoA dehydrogenases [112]. T3 treat-
ment is associated with signifi cant reductions in the expression levels of 
both peroxisomal catalase and cytoplasmic glutathione-S-transferase [55], 
the former being important in the protection of cells against the toxic ef-
fects of hydrogen peroxide while the latter is implicated in the cellular 
detoxifi cation of a number of xenobiotics by means of their conjugation 
to reduced glutathione. T3 treatment of hypothyroid rats is also associ-
ated with a selective upregulation of HSP60, a molecular chaperone [113]. 
SMP30, also known as regucalcin, which was previously not known to 
be affected by T3, has now been identifi ed as a T3 target [55]. This opens 
new perspectives in our understanding of the molecular pathways related 
to intracellular T3-dependent signaling, raising the possibility that T3 may 
modulate a plethora of cellular events while also acting on multifunctional 
proteins such as SMP30, which in turn is able to modulate the levels of 
second messengers such as calcium.
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T3-treated rats exhibit signifi cant reductions in the protein levels of 
both ornithine carbamoyltransferase and arginase 1 [55]. These data are in 
accordance with a previous report [114], and in line with the idea that in 
the hypothyroid state there are decreases in protein synthesis and turnover.

Concerning skeletal muscle, the whole-cell protein content of gastroc-
nemius muscle has been analyzed, and twenty differentially expressed 
proteins among euthyroid, hypothyroid, and hyperthyroid rats have been 
identifi ed [56]. The largest group of affected proteins (50%) was involved 
in substrate and energy metabolism, another important group was rep-
resented by stress-induced proteins (HSPs) (21.4%), and the remainder 
were implicated in structural features or gene expression (transcription, 
translation), each of these two groups representing 14.3% of the identifi ed 
proteins [56]. The thyroid state was found to induce structural shifts in 
gastrocnemius muscle, toward a slower phenotype in hypothyroidism and 
toward a faster phenotype in hyperthyroidism [56].

Among the proteins involved in substrate metabolism, three glycolytic 
enzymes have been identifi ed, namely, beta-enolase, pyruvate kinase, and 
triosephosphate isomerase. Beta-enolase protein levels were increased 
following T3 treatment (hyperthyroidism), while pyruvate kinase and 
triosephosphate isomerase levels were decreased in hypothyroidism and 
elevated in hyperthyroidism [56]. This is in accordance with (a) a ma-
jor T3-dependence on pyruvate kinase and triosephosphate isomerase and 
a generally decreased metabolic dependence on glycolysis in hypothy-
roidism, and (b) an increased reliance on glycolysis in hyperthyroidism 
[115]. Accordingly, hyperthyroidism was found to be associated with an 
increased expression of cytoplasmic malate dehydrogenase. Moreover, 
phosphatidylethanolamine-binding protein, a basic protein that shows 
preferential affi nity in vitro for phosphatidylethanolamine, was signifi -
cantly increased in both the hypo- and hyperthyroid gastrocnemius (versus 
the euthyroid controls), most likely refl ecting a thyroid state-associated 
cell-remodeling [56].

The expression level of the ATP synthase beta subunit was increased 
in both hypothyroid and hyperthyroid muscle (versus euthyroid controls), 
with a slight decrease in hyperthyroid animals versus hypothyroid ones. 
Cytosolic creatine kinase, on the other hand, was decreased in hypothy-
roidism versus both euthyroidism and hyperthyroidism, suggesting a de-



creased dependence of energy metabolism on the creatine kinase shuttle in 
hypothyroid muscle [56].

The expression level of HSP70 was found to be signifi cantly increased 
in hypothyroid muscle (versus both euthyroid and hyperthyroid muscle), 
paralleling the changes in MHCIb [56]. A similar expression pattern was 
found for HSP20 which, despite not being a heat-inducible HSP, is biologi-
cally regulated by several cellular signalling pathways. Also identifi ed was 
HSP27, which has been demonstrated to play important roles in smooth 
muscle cells (actin polymerization, remodeling, and even cross-bridge 
cycling), and which can, moreover, act as a chaperone in the regulation 
of contractile-protein activation [116] and also combat insulin resistance 
[117].

Concerning cell structure, in accordance with a predominant expres-
sion of MHCIb over MHCIIb in hypothyroidism and a reversal of the ratio 
between the two fi ber-type isoforms after T3 administration, the expres-
sion level of myosin regulatory light chain 2, typical of slow-twitch fi bers, 
was strongly increased in hypothyroidism, with hyperthyroidism signifi -
cantly reducing it (in each case, versus euthyroidism) [56].

Finally, both hypothyroidism and hyperthyroidism induced chromo-
domain-helicase-DNA-binding protein 1 (CHD 1), as well as eukaryotic 
translation initiation factor 3 subunit 10 (IF3A), two proteins that play 
important roles in different steps of gene expression: (1) initiation of tran-
scription; and (2) initiation of translation [56].

2.4 CONCLUSIONS

In conclusion, although the biochemical and cellular mechanisms that 
underlie sarcopenia in ageing muscle and the effects elicited by thyroid 
hormones are only beginning to be elucidated, array-based transcriptomic 
studies, together with MS-based proteomic ones, are producing new in-
sights into the pathophysiological mechanisms behind such complex phe-
nomena.

As can be seen from the above discussion, the approaches used in the 
cited studies have allowed the identifi cation of previously unrecognized 
proteins, thereby increasing our awareness of the large repertoire of pro-
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teins, and the multiple cell processes and signaling pathways that are af-
fected by T3 and by ageing (for a schematic representation, see Figures 2 
and 3). However, as the majority of the cited studies were performed in 
vivo, the possibility remains that certain hormones and/or other factors 
that are affected by such metabolic situations may have been partially re-
sponsible for the observed results.

On the basis of what has been achieved so far, the authors feel justifi ed 
in championing the use of combined transcriptomic and proteomic ap-
proaches in living animals for the study of complex physiological, as well 
as pathophysiological, systems. Such approaches should also prove valu-
able for drug-design, enabling the agonist and/or antagonist properties of 
drugs (as well as their side effects) to be characterized on the basis of the 
changes they induce in protein-expression patterns.
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NEXT GENERATION SEQUENCING IN 
CANCER RESEARCH AND CLINICAL 
APPLICATION

DEREK SHYR AND QI LIU

3.1 INTRODUCTION

Sanger sequencing has dominated the genomic research for the past two 
decades and achieved a number of significant accomplishments including 
the completion of human genome sequence, which made the identification 
of single gene disorders and the detection of targeted somatic mutation for 
clinical molecular diagnostics possible [1,2]. Despite Sanger sequencing's 
accomplishments, researchers are demanding for faster and more eco-
nomical sequencing, which has led to the emergence of “next-generation” 
sequencing technologies (NGS). NGS’s ability to produce an enormous 
volume of data at a low price [3,4] has allowed researchers to characterize 
the molecular landscape of diverse cancer types and has led to dramatic 
advances in cancer genomic studies.

The application of NGS, mainly through whole-genome (WGS) and 
whole-exome technologies (WES), has produced an explosion in the con-



FIGURE 1: The workflow of integrating omics data in cancer research and clinical 
application. NGS technologies detect the genomic, transcriptomic and epigenomic 
alternations including mutations, copy number variations, structural variants, differentially 
expressed genes, fusion transcripts, DNA methylation change, etc. Various kinds of 
bioinformatics tools are used to analyze, integrate, and interpret the data to improve our 
understanding of cancer biology and develop personalized treatment strategy.
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text and complexity of cancer genomic alterations, including point muta-
tions, small insertions or deletions, copy number alternations and structural 
variations. By comparing these alterations to matched normal samples, re-
searchers have been able to distinguish two categories of variants: somatic 
and germ line. The Whole transcriptome approach (RNA-Seq) can not 
only quantify gene expression profi les, but also detect alternative splic-
ing, RNA editing and fusion transcripts. In addition, epigenetic alterations, 
DNA methylation change and histone modifi cations can be studied using 
other sequencing approaches including Bisulfi te-Seq and ChIP-seq. The 
combination of these NGS technologies provides a high-resolution and 
global view of the cancer genome. Using powerful bioinformatics tools, 
researchers aim to decipher the huge amount of data to improve our under-
standing of cancer biology and to develop personalized treatment strategy. 
Figure 1 shows the workfl ow of integrating omics data in cancer research 
and clinical application.

3.2 CANCER RESEARCH

In the last several years, many NGS-based studies have been carried out to 
provide a comprehensive molecular characterization of cancers, to iden-
tify novel genetic alterations contributing to oncogenesis, cancer progres-
sion and metastasis, and to study tumor complexity, heterogeneity and 
evolution. These efforts have yielded significant achievements for breast 
cancer [5-12], ovarian cancer [13], colorectal cancer [14,15], lung cancer 
[16], liver cancer [17], kidney cancer [18], head and neck cancer [19], 
melanoma [20], acute myeloid leukemia (AML) [21,22], etc. Table 1 sum-
marizes the recent advances in cancer genomics research applying NGS 
technologies.

3.2.1 DISCOVERY OF NEW CANCER-RELATED GENES

Cancer is primarily caused by the accumulation of genetic alterations, 
which may be inherited in the germ line or acquired somatically during 
a cell’s life cycle. The effects of these alterations in oncogenes, tumor 



suppressor genes or DNA repair genes, allows cells to escape growth and 
regulatory control mechanisms, leading to the development of a tumor 
[23]. The progeny of the cancer cell may also undergo further mutations, 
resulting in clonal expansion [24]. As clonal expansion continues, clones 
eventually become invasive to its surrounding tissue and metastasize to 
distant areas from the primary tumor [25].

TABLE 1: Recent NGS-based studies in cancer
Cancer Experiment Design Description ref

Colon cancer 72 WES, 68 RNA-
seq, 2 WGS

Identify multiple gene fusions such as 
RSPO2 and RSPO3 from RNA-seq that may 
function in tumorigenesis

[15]

Breast cancer 65 WGS/WES, 80 
RNA-seq

36% of the mutations found in the study 
were expressed. Identify the abundance of 
clonal frequencies in an epithelial tumor 
subtype

[11]

Hepatocellular 
carcinoma

1 WGS, 1 WES Identify TSC1 nonsense substitution in sub-
population of tumor cells, intra-tumor hetero-
geneity, several chromosomal rearrange-
ments, and patterns in somatic substitutions

[17]

Breast cancer 510 WES Identify two novel protein-expression-
defined subgroups and novel subtype-associ-
ated mutations

[5]

Colon and rectal 
cancer

224 WES, 97 WGS 24 genes were found to be significantly 
mutated in both cancers. Similar patterns in 
genomic alterations were found in colon and 
rectum cancers

[14]

squamous cell 
lung cancer

178 WES, 19 WGS, 
178 RNA-seq, 158 
miRNA-seq

Identify significantly altered pathways 
including NFE2L2 and KEAP1 and potential 
therapeutic targets

[16]

Ovarian carci-
noma

316 WES Discover that most high-grade serous ovarian 
cancer contain TP53 mutations and recurrent 
somatic mutations in 9 genes

[13]

Melanoma 25 WGS Identify a significantly mutated gene, 
PREX2 and obtain a comprehensive genomic 
view of melanoma

[20]

Acute myeloid 
leukemia

8 WGS Identify mutations in relapsed genome and 
compare it to primary tumor. Discover two 
major clonal evolution patterns

[21]

Breast cancer 24 WGS Highlights the diversity of somatic rearrange-
ments and analyzes rearrangement patterns 
related to DNA maintenance

[8]
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Cancer Experiment Design Description ref

Breast cancer 31 WES, 46 WGS Identify eighteen significant mutated genes 
and correlate clinical features of oestrogen-
receptor-positive breast cancer with somatic 
alterations

[7]

Breast cancer 103 WES, 17 WGS Identify recurrent mutation in CBFB 
transcription factor gene and deletion of 
RUNX1. Also found recurrent MAGI3-
AKT3 fusion in triple-negative breast cancer

[6]

Breast cancer 100 WES Identify somatic copy number changes and 
mutations in the coding exons. Found new 
driver mutations in a few cancer genes

[9]

Acute myeloid 
leukemia

24 WGS Discover that most mutations in AML 
genomes are caused by random events in 
hematopoietic stem/progenitor cells and not 
by an initiating mutation

[22]

Breast cancer 21 WGS Depict the life history of breast cancer using 
algorithms and sequencing technologies to 
analyze subclonal diversification

[12]

Head and neck 
squamous cell 
carcinoma

32 WES Identify mutation in NOTCH1 that may 
function as an oncogene

[19]

Renal carcinoma 30 WES Examine intra-tumor heterogeneity reveal 
branch evolutionary tumor growth

[18]

The sequencing of cancer genomes has revealed a number of novel can-
cer-related genes, especially in breast cancer. Recently, six papers reported 
their fi ndings on large breast cancer dataset: TCGA performed exome se-
quencing on 510 samples from 507 patients [5], Banerji et al. conducted 
exome sequencing on 103 samples and whole genome sequencing on 17 
samples, Ellis et al. did exome sequencing on 31 samples and whole ge-
nome sequencing on 46 samples [7], Stephens et al. applied exome se-
quencing on 100 samples, Shah et al. performed whole genome/exome and 
RNA sequencing on 65 and 80 samples of triple-negative breast cancers 
[11], and Nik-Zainal et al. performed whole genome sequencing on 21 tu-
mor/normal pairs [12]. Besides confi rming recurrent somatic mutations in 
TP53, GATA3 and PIK3CA, these studies discovered novel cancer-related 
mutations. Although novel mutations occur at low frequency (less than 

TABLE 1: Cont.



10%), mutations of specifi c genes are enriched in the subtype of breast 
cancers and could be grouped into cancer-related pathways. For example, 
mutations of MAP3K1 frequently occur in luminal A subtype [5,7]. Path-
ways involving p53, chromatin remodeling and ERBB signaling are over-
represented in mutated genes [11]. Furthermore, some mutations indicate 
therapeutic opportunities such as the mutant GATA3, which might be a 
positive predictive marker for aromatase inhibitor response [7].

Genomic sequencing has also helped characterize the mutation profi le 
of colorectal cancer. For example, exome sequencing performed on 72 
tumor-normal pairs identifi ed 36,303 protein-altering somatic mutations. 
Further analysis for signifi cantly mutated genes led to 23 candidates that 
included expected cancer genes such as KRAS, TP53 and PIK3CA and 
novel genes such as ATM, which regulates the cell cycle checkpoint. RNA 
sequencing identifi ed recurrent R-spondin fusions, which might potentiate 
Wnt signaling and induce tumorigenesis [15]. Another example includes 
exome sequencing performed on 224 tumor and normal pairs. This study 
identifi ed 15 highly mutated genes in the hypermutated cancers and 17 
in the non-hypermutated cancers. Among the non-hypermutated cancers, 
novel frequent mutations in SOX9, ARID1A, ATM and FAM123B were 
detected besides the known APC, TP53 and KRAS mutations. The analy-
sis of the mutations and functional roles of SOX9, ARID1A, ATM and 
FAM123B suggested they are highly potential colorectal cancer-related 
genes. Non-hypermutated colon and rectum cancers were found to have 
similar patterns in genomic alternation. Whole genome sequencing of 97 
tumors with matched normal samples identifi ed the recurrent NAV2-TC-
F7L1 fusion [14].

3.2.2 TUMOR HETEROGENEITY AND EVOLUTION

What makes cancer a difficult disease to conquer has much to do with the 
evolution of cancer that results from the selection and genetic instability 
occurring in each clone, leading to heterogeneity in tumors [26]. This idea 
was first proposed by Peter Nowell in 1976 as the clonal evolution model 
of cancer, which attempted to explain the increase in tumor aggressive-
ness over a period of time. Further work by other researchers in the 1980s 
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supported this theory with studies of metastatic subclones from a mouse 
sarcoma cell line [26].

The wide application of NGS has revealed substantial insights into tu-
mor heterogeneity and tumor evolution. Variations between tumors are 
referred to as intertumor heterogeneity, while variations within a single tu-
mor are intratumor heterogeneity. Intertumor heterogeneity is recognized 
by different morphological phenotype, expression profi les and mutation 
and copy number variation patterns, categorizing tumors into different 
subtypes [27-31]. The mRNA-expression subtype was found to be associ-
ated with somatic mutation landscapes in the recent TCGA and Eillis et 
al.’s studies. [5,7]. As a huge amount of somatic mutations generated by 
NGS, the picture emerges like that individual tumor is unique, each con-
taining distinct mutation patterns. For instance, Stephens et al. found that 
there were 73 different combination possibilities of mutated cancer genes 
among the 100 breast cancers [9].

Intratumor heterogeneity can be recognized as non-identical cellular 
clones or subclones within a single tumor, indicating different histology, 
gene expression, and metastatic and proliferative potential. The ability to 
generate high-resolution data makes NGS a particularly useful tool for 
studying intratumor heterogeneity. A recent NGS-based study on renal cell 
carcinoma from four patients has successfully illuminated intratumor het-
erogeneity [18]. For patient 1, the pre-treatment samples of the primary 
tumor and chest-wall metastasis went through exon-capture multi-region 
sequencing on DNA. Of the 128 validated mutations found in 9 regions of 
the primary tumor, 40 were ubiquitous, 59 were shared by some regions, 
and 29 were unique to specifi c regions, showing that genetic heteroge-
neity exists within a tumor and an “ongoing regional clonal evolution” 
[18]. Most importantly, the study showed that a single biopsy of a tumor 
only reveals a small part of a tumor’s mutational landscape; from a single 
biopsy, about 55% of all mutations were detected in this tumor and 34% 
were shared by most regions of the tumor.

The ongoing and parallel evolution of cancer cells may establish and 
maintain intratumor heterogeneity. For example, phylogenetic relation-
ships of the tumor regions in patient 1 and 2 by the renal cell carcinoma 
study revealed a branching rather than linear evolution of the tumor [18]. 
Studies have also shown branching structures of evolution in breast cancer 



[26]. According to the “Trunk-Branch Model of Tumor Growth” [26], 
there are somatic events that promote tumor growth, which represents the 
trunk of the tree in the early stage of tumor development. These somatic 
aberrations would most likely be ubiquitous at this stage. Over time, other 
somatic events, known as drivers, cause tumor heterogeneity to occur, 
which causes branching to take place in tumors as well as in metastatic 
sites. Later, these branches will evolve and become more isolated, result-
ing in a ‘Bottleneck Effect’ that can result in chromosomal instability, al-
lowing further expansion of tumor heterogeneity [26]. This leads to the tu-
mor’s ability to adapt and survive in changing environments, which affects 
the success of drug treatment [18]. Therefore, it is important to examine 
tumor clonal structure and identify common mutations located in the trunk 
of the phylogenetic tree, which may help understand target therapy resis-
tance and discover more robust therapeutic approaches.

3.3 CLINICAL APPLICATION

Besides allowing researchers to understand mutations in cancer, NGS has 
already been applied to the clinic in many areas including prenatal diag-
nostics, pathogen detection, genetic mutations, and more [32]. Although 
genetic mutations have been identified with Sanger sequencing, PCR, 
and microarrays in clinical application, these three have limitations that 
don’t apply to NGS. For example, although microarrays can detect single 
nucleotide variants (SNVs), they have trouble identifying larger DNA ab-
errations, e.g., large indels and structural rearrangements, which are com-
mon in cancer. In contrast, whole exome and whole-genome sequencing 
can provide the clinician a comprehensive view of the DNA aberrations, 
genetic recombination, and other mutations [28,32]. Therefore, NGS plat-
forms serve as a good diagnostic and prognostic tool and help clinicians 
identify specific characteristics in each patient, paving the road towards 
personalized medicine.

NGS has already been applied in the clinic for cancer diagnosis and 
prognosis. For example, whole genome sequencing identifi ed a novel in-
sertional fusion that created a classic bcr3 PML-RARA fusion gene for a 
patient with acute myeloid leukemia and the fi ndings altered the treatment 
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plan for the patient [33]. By sequencing the tumor genome of a patient, 
clinicians are able to design patient-specifi c probes that uses DNA in the 
patient’s blood serum to monitor the progress of a patient’s treatment and 
detect for any signs of relapse [27-31]. The discovery of more biomarkers 
and the development of target-therapies will be essential in helping a clini-
cian choose the best personalized treatment for his or her patients.

There has also been a dramatic increase in the number of clinical trials 
using NGS technologies since 2010 (Table 2). Ranging from WGS and 
WES to RNA-seq and targeted sequencing, clinical trials are using NGS 
to fi nd genetic alterations that are the drivers of certain diseases in patients 
and apply that knowledge into the practice of clinical medicine. The in-
formation gained from these studies may help with drug development and 
explain the resistance of certain treatments.

3.4 METHODS AND RESOURCES

3.4.1 PIPELINE AND TOOLS FOR NGS DATA ANALYSIS

To analyze and interpret the increasing amount of sequencing data, a num-
ber of statistical methods and bioinformatics tools have been developed. 
For WGS and WES, the analysis generally includes read alignment, vari-
ant detection (point mutation, small indels, copy number variation and 
structural rearrangement) and variant functional prediction (Table 3). 
Reads are mapped back to the human reference genomes using MAQ 
[34], BWA [35,36], Bowtie2 [37], BFAST [38], SOAP2 [39], Novoalign/
NovoalignCS, SSAHA2 [40], SHRiMP [41], etc. These methods differ in 
their computational efficiency, sensitivity and ability to accurately map 
noisy reads, to deal with long or short reads and pair-end reads. Having 
aligned the reads to the genome, mutation calling identifies the sites in 
which at least one of the bases differs from a reference sequence by GATK 
[42], SAMtools [43], SOAPsnp [44], SNVMix [45], Varscan [46], etc. 
Differing in the underlying statistical models, the performances of these 
methods are comparable and vary on sequencing depths [47-49]. Detecting 



somatic mutation involves mutation calling in paired tumor-normal DNA, 
coupled with comparison to the reference. A naïve somatic mutation caller 
applies standard calling tools on the normal and tumor samples separately 
and then selects mutations detected in tumor but not in normal. Alterna-
tively, a complicated caller jointly analyzes tumor-normal pair data such 
as Varscan2 [50], Somaticsniper [51] and JointSNVMix [52]. SIFT [53], 
PolyPhen [54], CHASM [55] and ANNOVAR [56] have been developed 
to understand the impact of the mutations on gene function and to distin-
guish between driver and passenger mutations. For WGS, various kinds 
of structural variations can be discovered using BreakDancer [57], Varia-
tionHunter [58], PEMer [59] and SVDetect [60]. RNA-seq data analysis 
generally includes reads alignment, gene expression quantification, dif-
ferentially expressed genes/isoforms or alternative splicing detection and 
novel transcripts discovery (Table 4). There are two major approaches to 
map RNA-seq reads. One is to align reads to the reference transcriptome 
using standard DNA-seq reads aligner. The alternative is to map reads to 
the reference genome allowing for the identification of novel splice junc-
tions using a RNA-seq specific aligner, such as TopHat [61], MapSplice 
[62], SpliceMap [63], GSNAP [64], and STAR [65]. Having aligned 
reads, expression values are quantified by aggregating reads into counts 
and differential expression analysis is performed based on counts (DEseq 
[66],edgeR [67]) or FPKM/RPKM values (CuffLinks [68,69]). Estimat-
ing isoform-level expression is very difficult since many genes have mul-
tiple isoforms and most reads are shared by different isoforms. To deal 
with read assignment uncertainty, Alexa-seq [70] counts only the reads 
that map uniquely to a single isoform, while Cufflinks [68,69] and MISO 
[71] construct a likelihood model that best explains all the reads obtained 
in the experiment. In addition, fusion transcripts can be detected using 
SOAPfusion, TopHat-Fusion [72], BreakFusion [73], FusionHunter [74], 
deFuse [75], FusionAnalyser [76], etc. To obtain a more complete view of 
cancer genome, an integrative approach to study diverse mutations, tran-
scriptomes and epigenomes simultaneously on the pathways or networks 
is much more informative and promising. A growing number of pathway-
oriented tools is now becoming available, including PARADIGM [77], 
NetBox [78], MEMo [79], CONEXIC [80], etc.
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TABLE 3: Computational tools for cancer genomics

Category Program URL Ref

Alignment MAQ http://maq.sourceforge.net/ [34]

BWA http://bio-bwa.sourceforge.net/ [35,36]

Bowtie2 http://bowtie-bio.sourceforge.net/
bowtie2/ 

[37]

BFAST http://bfast.sourceforge.net [38]

SOAP2 http://soap.genomics.org.cn/soapaligner.
html 

[39]

Novoalign/NovoalignCS http://www.novocraft.com/ 

SSAHA2 http://www.sanger.ac.uk/resources/soft-
ware/ssaha2/ 

[40]

SHRiMP http://compbio.cs.toronto.edu/shrimp/ [41]

Mutation 
calling

GATK http://www.broadinstitute.org/gatk/ [42]

Samtools http://samtools.sourceforge.net/ [43]

SOAPsnp http://soap.genomics.org.cn/soapsnp.
html 

[44]

SNVmix http://compbio.bccrc.ca/software/snv-
mix/ 

[45]

VarScan http://varscan.sourceforge.net/ [46,50]

Somaticsniper http://gmt.genome.wustl.edu/somatic-
sniper/ 

[51]

JointSNVMix http://compbio.bccrc.ca/software/
jointsnvmix/ 

[52]

SV 
detection

BreakDancer http://breakdancer.sourceforge.net/ [57]

VariationHunter http://variationhunter.sourceforge.net/ [58]

PEMer http://sv.gersteinlab.org/pemer/ [59]

SVDetect http://svdetect.sourceforge.net/ [60]

Function 
effect of 
mutation

SIFT http://sift.jcvi.org/ [53]

CHASM http://wiki.chasmsoftware.org [55]

PolyPhen-2 http://genetics.bwh.harvard.edu/pph2/ [54]

ANNOVAR http://www.openbioinformatics.org/
annovar/ 

[56]

Source: http://www.clinicaltrials.gov .
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TABLE 4: Computational tools for cancer transcriptomics

Category Program URL ref

Spliced 
alignment

TopHat http://tophat.cbcb.umd.edu/ [61,69]

MapSplice http://www.netlab.uky.edu/p/bioinfo/MapSplice [62]

SpliceMap http://www.stanford.edu/group/wonglab/Splice-
Map/ 

[63]

GSNAP http://research-pub.gene.com/gmap/ [64]

STAR http://gingeraslab.cshl.edu/STAR/ [65]

Differential 
expression

CuffDiff http://cufflinks.cbcb.umd.edu/ [68,69]

EdgeR http://www.bioconductor.org/packages/2.11/
bioc/html/edgeR.html 

[67]

DESeq http://www-huber.embl.de/users/anders/DESeq/ [66]

Myrna http://bowtie-bio.sourceforge.net/myrna/index.
shtml 

[81]

Alternative 
splicing

CuffDiff http://cufflinks.cbcb.umd.edu/ [68,69]

MISO http://genes.mit.edu/burgelab/miso/ [71]

DEXseq http://watson.nci.nih.gov/bioc_mirror/pack-
ages/2.9/bioc/html/DEXSeq.html 

[82]

Alexa-seq http://www.alexaplatform.org/alexa_seq/ [70]

Gene fusion SOAPfusion http://soap.genomics.org.cn/SOAPfusion.html 

TopHat-Fusion http://tophat.cbcb.umd.edu/fusion_index.html [72]

BreakFusion http://bioinformatics.mdanderson.org/main/
BreakFusion 

[73]

FusionHunter http://bioen-compbio.bioen.illinois.edu/Fusion-
Hunter/ 

[74]

deFuse http://sourceforge.net/apps/mediawiki/defuse/ [75]

FusionAnalyser http://www.ilte-cml.org/FusionAnalyser/ [76]

3.4.2 COMPREHENSIVE CANCER PROJECTS AND RESOURCES

The vast amount of oncogenomics data are generated from large scale col-
laborative cancer projects (Table 5). The Cancer Genome Atlas (TCGA) 
and International Cancer Genome Consortium (ICGC) are the two largest 

http://www.stanford.edu/group/wonglab/SpliceMap/
http://www.bioconductor.org/packages/2.11/bioc/html/edgeR.html
http://bowtie-bio.sourceforge.net/myrna/index.shtml
http://watson.nci.nih.gov/bioc_mirror/packages/2.9/bioc/html/DEXSeq.html
http://bioinformatics.mdanderson.org/main/BreakFusion
http://bioen-compbio.bioen.illinois.edu/FusionHunter/


representatives of such coordinated efforts. Beginning as a three-year pi-
lot in 2006, TCGA aims to comprehensively map the important genomic 
changes that occur in the major types and subtypes of cancer. TCGA will 
examine over 11,000 samples for 20 cancer types (http://cancergenome.
nih.gov/). ICGC launched in 2008 and its goal is ‘to obtain a comprehen-
sive description of genomic, transcriptomic and epigenomic changes in 50 
different tumor types and/or subtypes which are of clinical and societal 
importance across the globe’(http://icgc.org/icgc). The Cancer Genome 
Project (CGP) has many efforts at the Sanger Institute and aims to identify 
sequence variants/mutations critical in the development of human can-
cers (http://www.sanger.ac.uk/genetics/CGP/). The NCI’s Cancer Genome 
Anatomy Project (CGAP) seeks to determine the gene expression profiles 
of normal, precancer and cancer cells, leading eventually to improved de-
tection, diagnosis and treatment for the patient (http://cgap.nci.nih.gov/). 
Recently, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) 
has launched to systematically identify proteins that derive from altera-
tions in cancer genomes using proteomic technologies (http://proteomics.
cancer.gov/). The combination of genomic and proteomic initiatives is an-
ticipated to produce a more comprehensive inventory of the detectable 
proteins in a tumor and advance our understanding of cancer biology.

The data and the results from these projects are freely available to the 
research community (Table 5). A number of databases and frameworks 
have been developed to make the data and the results easily and directly 
accessible. For example, the results from CGP are collated and stored in 
http://COSMIC [83]. The cBio Cancer Genomics Portal, containing dataset 
from TCGA and published papers, is specifi cally designed to interactively 
explore multidimensional cancer genomics data, including mutation, copy 
number variations, expression changes (microarray and RNA-seq), DNA 
methylation values, and protein and phosphoprotein levels [84]. Intogen 
is also a framework that facilitates the analysis and integration of multi-
mensional data for the identifi cation of genes and biological modules criti-
cal in cancer development [85]. The Broad GDAC Firehose, designed to 
coordinate the various tools utilized by TCGA, provides level 3 and level 
4 analyses and enables researchers to easily incorporate TCGA data into 
their projects. Table 5 also includes resources useful for cancer research 
but not built on NGS data, e.g., Progenetix [86].
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3.5 CHALLENGES AND PERSPECTIVE

Although NGS has already helped researchers discover a plethora of infor-
mation in the field of cancer, challenges in translating the large amounts 
of oncogenomics data into information that can be easily interpretable and 
accessible for cancer care still lie ahead. From a computational point of 
view, many technical and statistical issues remain unsolved. For example, 
repetitive DNA represents a major obstacle for the accuracy of read align-
ment and assembly, as well as structure variation detection [87]. Further-
more, it is difficult to distinguish rare mutations in tumor from sequencing 
and alignment artifacts, especially when a tumor has low purity. Despite 
new methods to comprehensively catalogue genomic variants, the predic-
tion of their functional effect and the identification of disease-causal vari-
ants are still in an early phase [88]. Current algorithms for quantifying 
isoform expression are not computationally trivial and are incredibly dif-
ficult to explain. Although the concept of integrative analysis is not new, 
predictive networks or pathway models that combine various omics data 
are still underway. Most importantly, since sequencing technologies and 
methodologies are both evolving rapidly, it is a difficult challenge to store, 
analyze and present the data in a method that is transparent and reproduc-
ible [89]. On the other hand, tumor complexity and heterogeneity make 
the analysis and the interpretation of sequencing data even harder. Het-
erogeneity is dynamic and evolves over time. This challenges the simple 
notion of binning mutations as tumorigenesis ‘driver’ and neutral ‘pas-
senger,’ since some passengers are also drivers just waiting for the right 
context [90].

From a clinical point of view, a major challenge is to assess genomic 
variants as potential therapeutic targets. Although many diverse variants 
are demonstrated to converge on similar deregulated pathways, there is 
still a lack of pathway-targeted therapies. With the discovery of intra-tu-
mor heterogeneity, questions have been raised about how well a glimpse 
of a tumor’s genomic landscape can steer the treatment. Currently, many 
clinicians decide a treatment based on the genetic markers from a few bi-
opsies. Whether these markers are over- or under-represented in the tumor 
is unknown, causing the selection of treatment to be diffi cult [29]. In addition 



to heterogeneity, the tumor’s ability to evolve allows it to have more op-
portunities to adapt and survive to various treatments. Some researchers 
hope that with current target therapies, intratumor heterogeneity will de-
crease to a certain point [29] so that clinicians can then target the non-re-
sponsive clones before a tumor re-growth and more mutations can occur; 
however, choosing an appropriate target therapy will be a challenge. A few 
researchers have already shown certain treatments, such as the cytotoxic 
therapies, that have increased genome instability and diversity, resulting in 
a faster tumor evolution rate and, thus, heterogeneity. The fact is that this 
area of cancer is understudied [26]; however, one of the key challenges 
researchers must solve is identifying branched subclones are resistant to 
which target therapies. More knowledge of network medicine and the in-
teraction between the trunk and branch mutations may lead to appropriate 
target therapies and personalized therapeutic strategies that can prevent 
drug resistance and effectively eradicate cancer [26,91].

To accelerate the rate of translating genomic data into clinical practice, a 
sustained collaboration among multiple centers and effective communica-
tion among bioinformaticians, statistical geneticists, molecular biologists 
and physician are required. Bioinformaticians and statistical geneticists 
are responsible for providing reproducible and accurate analysis, identi-
fying ‘drivers’ in the unstable and evolving cancer genome and building 
powerful and fl exible integrative model to consider interactions among 
genomic, transcriptomic, metabolomics, proteomics and epigenomic al-
terations in the context of tumor microenvironment. Biologists interpret 
and confi rm the functional relevance of variants to cancer. Physicians as-
sess relationships of variants to cancer prognosis and response to therapy. 
Appropriate infrastructure within each research institution that integrates 
the clinic for patient samples, wet lab for sequencing, and Bioinformatics 
for data analysis should allow the sequenced data to be processed effi -
ciently, producing results that can create effective personalized therapies 
applicable to the clinic. In addition, easily accessible and understandable 
databases that connect genomic fi ndings with clinical outcome are also 
required. With these efforts and developments, NGS will greatly potenti-
ate genome-based cancer diagnosis and personalized treatment strategies.

88 Omics in Clinical Practice



Next Gen Sequencing in Cancer Research and Clinical Application 89

REFERENCES

1. Taylor BS, Ladanyi M: Clinical cancer genomics: how soon is now? J Pathol 2011, 
223:318-326. 

2. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur 
GA, Hutson TE, Moschos SJ, Flaherty KT, Hersey P, Kefford R, Lawrence D, Pu-
zanov I, Lewis KD, Amaravadi RK, Chmielowski B, Lawrence HJ, Shyr Y, Ye F, Li 
J, Nolop KB, Lee RJ, Joe AK, Ribas A: Survival in BRAF V600-mutant advanced 
melanoma treated with vemurafenib. N Engl J Med 2012, 366:707-714. 

3. Metzker ML: Sequencing technologies - the next generation. Nat Rev Genet 2010, 
11:31-46. 

4. Wold B, Myers RM: Sequence census methods for functional genomics. Nat Meth-
ods 2008, 5:19-21. 

5. Cancer Genome Atlas Research Network: Comprehensive molecular portraits of hu-
man breast tumours. Nature 2012, 490:61-70. 

6. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, 
Lawrence MS, Sivachenko AY, Sougnez C, Zou L, Cortes ML, Fernandez-Lopez JC, 
Peng S, Ardlie KG, Auclair D, Bautista-Pina V, Duke F, Francis J, Jung J, Maffuz-
Aziz A, Onofrio RC, Parkin M, Pho NH, Quintanar-Jurado V, Ramos AH, Rebollar-
Vega R, Rodriguez-Cuevas S, Romero-Cordoba SL, Schumacher SE, Stransky N, 
Thompson KM, Uribe-Figueroa L, Baselga J, Beroukhim R, Polyak K, Sgroi DC, 
Richardson AL, Jimenez-Sanchez G, Lander ES, Gabriel SB, Garraway LA, Golub 
TR, Melendez-Zajgla J, Toker A, Getz G, Hidalgo-Miranda A, Meyerson M: Se-
quence analysis of mutations and translocations across breast cancer subtypes. Na-
ture 2012, 486:405-409. 

7. Ellis MJ: Whole-genome analysis informs breast cancer response to aromatase inhi-
bition. Nature 2012, 486:353-360. 

8. Stephens PJ: Complex landscapes of somatic rearrangement in human breast cancer 
genomes. Nature 2009, 462:1005-1010. 

9. Stephens PJ: The landscape of cancer genes and mutational processes in breast can-
cer. Nature 2012, 486:400-404. 

10. Nik-Zainal S: The life history of 21 breast cancers. Cell 2012, 149:994-1007. 
11. Shah SP: The clonal and mutational evolution spectrum of primary triple-negative 

breast cancers. Nature 2012, 486:395-399. 
12. Nik-Zainal S: Mutational processes molding the genomes of 21 breast cancers. Cell 

2012, 149:979-993. 
13. Cancer Genome Atlas Research Network: Integrated genomic analyses of ovarian 

carcinoma. Nature 2011, 474:609-615. 
14. Cancer Genome Atlas Research Network: Comprehensive molecular characteriza-

tion of human colon and rectal cancer. Nature 2012, 487:330-337. 
15. Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB, Chaud-

huri S, Guan Y, Janakiraman V, Jaiswal BS, Guillory J, Ha C, Dijkgraaf GJ, Stinson 
J, Gnad F, Huntley MA, Degenhardt JD, Haverty PM, Bourgon R, Wang W, Koep-



pen H, Gentleman R, Starr TK, Zhang Z, Largaespada DA, Wu TD, de Sauvage FJ: 
Recurrent R-spondin fusions in colon cancer. Nature 2012, 488:660-664. 

16. Hammerman PS, Hayes DN, Wilkerson MD, Schultz N, Bose R, Chu A, Collis-
son EA, Cope L, Creighton CJ, Getz G, Herman JG, Johnson BE, Kucherlapati R, 
Ladanyi M, Maher CA, Robertson G, Sander C, Shen R, Sinha R, Sivachenko A, 
Thomas RK, Travis WD, Tsao MS, Weinstein JN, Wigle DA, Baylin SB, Govindan 
R, Meyerson M: Comprehensive genomic characterization of squamous cell lung 
cancers. Nature 2012, 489:519-525. 

17. Totoki Y, Tatsuno K, Yamamoto S, Arai Y, Hosoda F, Ishikawa S, Tsutsumi S, So-
noda K, Totsuka H, Shirakihara T, Sakamoto H, Wang L, Ojima H, Shimada K, 
Kosuge T, Okusaka T, Kato K, Kusuda J, Yoshida T, Aburatani H, Shibata T: High-
resolution characterization of a hepatocellular carcinoma genome. Nat Genet 2011, 
43:464-469. 

18. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez 
P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald 
NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, 
Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, 
Futreal PA, Swanton C: Intratumor heterogeneity and branched evolution revealed 
by multiregion sequencing. N Engl J Med 2012, 366:883-892. 

19. Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, Fakhry 
C, Xie TX, Zhang J, Wang J, Zhang N, El-Naggar AK, Jasser SA, Weinstein JN, 
Trevino L, Drummond JA, Muzny DM, Wu Y, Wood LD, Hruban RH, Westra WH, 
Koch WM, Califano JA, Gibbs RA, Sidransky D, Vogelstein B, Velculescu VE, Pa-
padopoulos N, Wheeler DA, Kinzler KW, Myers JN: Exome sequencing of head and 
neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 
2011, 333:1154-1157. 

20. Berger MF: Melanoma genome sequencing reveals frequent PREX2 mutations. Na-
ture 2012, 485:502-506. 

21. Ding L: Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-
genome sequencing. Nature 2012, 481:506-510. 

22. Welch JS: The origin and evolution of mutations in acute myeloid leukemia. Cell 
2012, 150:264-278. 

23. Wong KM, Hudson TJ, McPherson JD: Unraveling the genetics of cancer: genome 
sequencing and beyond. Annu Rev Genomics Hum Genet 2011, 12:407-430. 

24. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C: Genetic instability and darwinian 
selection in tumours. Trends Cell Biol 1999, 9:M57-M60. 

25. Brosnan JA, Iacobuzio-Donahue CA: A new branch on the tree: next-generation 
sequencing in the study of cancer evolution. Semin Cell Dev Biol 2012, 23:237-242. 

26. Swanton C: Intratumor heterogeneity: evolution through space and time. Cancer Res 
2012, 72:4875-4882. 

27. Russnes HG, Navin N, Hicks J, Borresen-Dale AL: Insight into the heterogeneity 
of breast cancer through next-generation sequencing. J Clin Invest 2011, 121:3810-
3818. 

28. Samuel N, Hudson TJ: Translating Genomics to the Clinic. Clinical chemistry: Im-
plications of Cancer Heterogeneity; 2012. 

90 Omics in Clinical Practice



Next Gen Sequencing in Cancer Research and Clinical Application 91

29. Almendro V, Fuster G: Heterogeneity of breast cancer: etiology and clinical rel-
evance. Clinical & translational oncology: official publication of the Federation of 
Spanish Oncology Societies and of the National Cancer Institute of Mexico 2011, 
13:767-773. 

30. Yancovitz M, Litterman A, Yoon J, Ng E, Shapiro RL, Berman RS, Pavlick AC, 
Darvishian F, Christos P, Mazumdar M, Osman I, Polsky D: Intra- and inter-tumor 
heterogeneity of BRAF(V600E))mutations in primary and metastatic melanoma. 
PLoS One 2012, 7:e29336. 

31. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch 
AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McK-
inney S, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Mar-
kowetz F, Murphy L, Ellis I, Purushotham A, Borresen-Dale AL, Brenton JD, Ta-
vare S, Caldas C, Aparicio S: The genomic and transcriptomic architecture of 2,000 
breast tumours reveals novel subgroups. Nature 2012, 486:346-352. 

32. Desai AN, Jere A: Next-generation sequencing: ready for the clinics? Clin Genet 
2012, 81:503-510. 

33. Welch JS, Westervelt P, Ding L, Larson DE, Klco JM, Kulkarni S, Wallis J, Chen 
K, Payton JE, Fulton RS, Veizer J, Schmidt H, Vickery TL, Heath S, Watson MA, 
Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Ley TJ, Wilson RK: 
Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA 
2011, 305:1577-1584. 

34. Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling variants 
using mapping quality scores. Genome Res 2008, 18:1851-1858. 

35. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler trans-
form. Bioinformatics 2009, 25:1754-1760. 

36. Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler trans-
form. Bioinformatics 2010, 26:589-595. 

37. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 
2012, 9:357-359. 

38. Homer N, Merriman B, Nelson SF: BFAST: an alignment tool for large scale ge-
nome resequencing. PLoS One 2009, 4:e7767. 

39. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an improved 
ultrafast tool for short read alignment. Bioinformatics 2009, 25:1966-1967. 

40. Ning Z, Cox AJ, Mullikin JC: SSAHA: a fast search method for large DNA data-
bases. Genome Res 2001, 11:1725-1729. 

41. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M: SHRiMP: ac-
curate mapping of short color-space reads. PLoS Comput Biol 2009, 5:e1000386. 

42. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis 
AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, 
Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ: A framework for 
variation discovery and genotyping using next-generation DNA sequencing data. 
Nat Genet 2011, 43:491-498. 

43. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis 
G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 
2009, 25:2078-2079. 



44. Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K: SNP detection for massively 
parallel whole-genome resequencing. Genome Res 2009, 19:1124-1132. 

45. Goya R, Sun MG, Morin RD, Leung G, Ha G, Wiegand KC, Senz J, Crisan A, Marra 
MA, Hirst M, Huntsman D, Murphy KP, Aparicio S, Shah SP: SNVMix: predicting 
single nucleotide variants from next-generation sequencing of tumors. Bioinformat-
ics 2010, 26:730-736. 

46. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock 
GM, Wilson RK, Ding L: VarScan: variant detection in massively parallel sequenc-
ing of individual and pooled samples. Bioinformatics 2009, 25:2283-2285. 

47. Lam HY, Pan C, Clark MJ, Lacroute P, Chen R, Haraksingh R, O’Huallachain M, 
Gerstein MB, Kidd JM, Bustamante CD, Snyder M: Detecting and annotating ge-
netic variations using the HugeSeq pipeline. Nat Biotechnol 2012, 30:226-229. 

48. Liu Q, Guo Y, Li J, Long J, Zhang B, Shyr Y: Steps to ensure accuracy in genotype 
and SNP calling from Illumina sequencing data. BMC Genomics 2012, 13:S8. 

49. Wang W, Wei Z, Lam TW, Wang J: Next generation sequencing has lower sequence 
coverage and poorer SNP-detection capability in the regulatory regions. Sci Rep 
2011, 1:55. 

50. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mar-
dis ER, Ding L, Wilson RK: VarScan 2: somatic mutation and copy number altera-
tion discovery in cancer by exome sequencing. Genome Res 2012, 22:568-576. 

51. Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, Ley TJ, Mar-
dis ER, Wilson RK, Ding L: SomaticSniper: identification of somatic point muta-
tions in whole genome sequencing data. Bioinformatics 2012, 28:311-317. 

52. Roth A, Ding J, Morin R, Crisan A, Ha G, Giuliany R, Bashashati A, Hirst M, 
Turashvili G, Oloumi A, Marra MA, Aparicio S, Shah SP: JointSNVMix: a proba-
bilistic model for accurate detection of somatic mutations in normal/tumour paired 
next-generation sequencing data. Bioinformatics 2012, 28:907-913. 

53. Kumar P, Henikoff S, Ng PC: Predicting the effects of coding non-synonymous vari-
ants on protein function using the SIFT algorithm. Nat Protoc 2009, 4:1073-1081. 

54. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kon-
drashov AS, Sunyaev SR: A method and server for predicting damaging missense 
mutations. Nat Methods 2010, 7:248-249. 

55. Wong WC, Kim D, Carter H, Diekhans M, Ryan MC, Karchin R: CHASM and 
SNVBox: toolkit for detecting biologically important single nucleotide mutations in 
cancer. Bioinformatics 2011, 27:2147-2148. 

56. Wang K, Li M, Hakonarson H: ANNOVAR: functional annotation of genetic vari-
ants from high-throughput sequencing data. Nucleic Acids Res 2010, 38:e164. 

57. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, 
Wendl MC, Zhang Q, Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, 
Mardis ER: BreakDancer: an algorithm for high-resolution mapping of genomic 
structural variation. Nat Methods 2009, 6:677-681. 

58. Hormozdiari F, Hajirasouliha I, Dao P, Hach F, Yorukoglu D, Alkan C, Eichler EE, 
Sahinalp SC: Next-generation VariationHunter: combinatorial algorithms for trans-
poson insertion discovery. Bioinformatics 2010, 26:i350-i357. 

92 Omics in Clinical Practice



Next Gen Sequencing in Cancer Research and Clinical Application 93

59. Korbel JO, Abyzov A, Mu XJ, Carriero N, Cayting P, Zhang Z, Snyder M, Gerstein 
MB: PEMer: a computational framework with simulation-based error models for 
inferring genomic structural variants from massive paired-end sequencing data.

60. Genome Biol 2009, 10:R23. 
61. Zeitouni B, Boeva V, Janoueix-Lerosey I, Loeillet S, Legoix-ne P, Nicolas A, Delat-

tre O, Barillot E: SVDetect: a tool to identify genomic structural variations from 
paired-end and mate-pair sequencing data. Bioinformatics 2010, 26:1895-1896. 

62. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-
Seq. Bioinformatics 2009, 25:1105-1111. 

63. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski 
P, Grimm SA, Perou CM, MacLeod JN, Chiang DY, Prins JF, Liu J: MapSplice: ac-
curate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 
2010, 38:e178. 

64. Au KF, Jiang H, Lin L, Xing Y, Wong WH: Detection of splice junctions from 
paired-end RNA-seq data by SpliceMap. Nucleic Acids Res 2010, 38:4570-4578. 

65. Wu TD, Nacu S: Fast and SNP-tolerant detection of complex variants and splicing 
in short reads. Bioinformatics 2010, 26:873-881. 

66. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson 
M, Gingeras TR: STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013, 
29:15-21. 

67. Anders S, Huber W: Differential expression analysis for sequence count data. Ge-
nome Biol 2010, 11:R106. 

68. Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for dif-
ferential expression analysis of digital gene expression data. Bioinformatics 2010, 
26:139-140. 

69. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L: Differential 
analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 
2012, 31:46-53. 

70. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg 
SL, Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-
seq experiments with TopHat and Cufflinks. Nat Protoc 2012, 7:562-578. 

71. Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD, Corbett 
R, Tang MJ, Hou YC, Pugh TJ, Robertson G, Chittaranjan S, Ally A, Asano JK, 
Chan SY, Li HI, McDonald H, Teague K, Zhao Y, Zeng T, Delaney A, Hirst M, 
Morin GB, Jones SJ, Tai IT, Marra MA: Alternative expression analysis by RNA 
sequencing. Nat Methods 2010, 7:843-847. 

72. Katz Y, Wang ET, Airoldi EM, Burge CB: Analysis and design of RNA sequencing 
experiments for identifying isoform regulation. Nat Methods 2010, 7:1009-1015. 

73. Kim D, Salzberg SL: TopHat-Fusion: an algorithm for discovery of novel fusion 
transcripts. Genome Biol 2011, 12:R72. 

74. Chen K, Wallis JW, Kandoth C, Kalicki-Veizer JM, Mungall KL, Mungall AJ, Jones 
SJ, Marra MA, Ley TJ, Mardis ER, Wilson RK, Weinstein JN, Ding L: BreakFu-
sion: targeted assembly-based identification of gene fusions in whole transcriptome 
paired-end sequencing data. Bioinformatics 2012, 28:1923-1924. 



75. Li Y, Chien J, Smith DI, Ma J: FusionHunter: identifying fusion transcripts in cancer 
using paired-end RNA-seq. Bioinformatics 2011, 27:1708-1710. 

76. McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG, Griffith M, 
Heravi Moussavi A, Senz J, Melnyk N, Pacheco M, Marra MA, Hirst M, Nielsen 
TO, Sahinalp SC, Huntsman D, Shah SP: deFuse: an algorithm for gene fusion dis-
covery in tumor RNA-Seq data. PLoS Comput Biol 2011, 7:e1001138. 

77. Piazza R, Pirola A, Spinelli R, Valletta S, Redaelli S, Magistroni V, Gambacorti-Pas-
serini C: FusionAnalyser: a new graphical, event-driven tool for fusion rearrange-
ments discovery. Nucleic Acids Res 2012, 40:e123. 

78. Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, Haussler D, Stuart JM: 
Inference of patient-specific pathway activities from multi-dimensional cancer ge-
nomics data using PARADIGM. Bioinformatics 2010, 26:i237-i245. 

79. Cerami E, Demir E, Schultz N, Taylor BS, Sander C: Automated network analysis 
identifies core pathways in glioblastoma. PLoS One 2010, 5:e8918. 

80. Ciriello G, Cerami E, Sander C, Schultz N: Mutual exclusivity analysis identifies 
oncogenic network modules. Genome Res 2012, 22:398-406. 

81. Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, Causton HC, Pochanard 
P, Mozes E, Garraway LA, Pe’er D: An integrated approach to uncover drivers of 
cancer. Cell 2010, 143:1005-1017. 

82. Langmead B, Hansen KD, Leek JT: Cloud-scale RNA-sequencing differential ex-
pression analysis with Myrna. Genome Biol 2010, 11:R83. 

83. Anders S, Reyes A, Huber W: Detecting differential usage of exons from RNA-seq 
data. Genome Res 2012, 22:2008-2017. 

84. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, 
Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA: COSMIC: 
mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. 
Nucleic Acids Res 2011, 39:D945-D950. 

85. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne 
CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N: 
The cBio cancer genomics portal: an open platform for exploring multidimensional 
cancer genomics data. Cancer Discov 2012, 2:401-404. 

86. Gundem G, Perez-Llamas C, Jene-Sanz A, Kedzierska A, Islam A, Deu-Pons J, Fur-
ney SJ, Lopez-Bigas N: IntOGen: integration and data mining of multidimensional 
oncogenomic data. Nat Methods 2010, 7:92-93. 

87. Baudis M, Cleary ML: Progenetix.net: an online repository for molecular cytoge-
netic aberration data. Bioinformatics 2001, 17:1228-1229. 

88. Treangen TJ, Salzberg SL: Repetitive DNA and next-generation sequencing: com-
putational challenges and solutions. Nat Rev Genet 2012, 13:36-46.  

89. Cooper GM, Shendure J: Needles in stacks of needles: finding disease-causal vari-
ants in a wealth of genomic data. Nat Rev Genet 2011, 12:628-640. 

90. Nekrutenko A, Taylor J: Next-generation sequencing data interpretation: enhancing 
reproducibility and accessibility. Nat Rev Genet 2012, 13:667-672. 

91. Eisenstein M: Reading cancer’s blueprint. Nat Biotechnol 2012, 30:581-584. 
92. Katsios C, Papaloukas C, Tzaphlidou M, Roukos DH: Next-generation sequencing-

based testing for cancer mutational landscape diversity: clinical implications? Ex-
pert Rev Mol Diagn 2012, 12:667-670. 

94 Omics in Clinical Practice



This chapter was originally published under the Creative Commons Attribution License. Lam YWF. 
Scientific Challenges and Implementation Barriers to Translation of Pharmacogenomics in Clinical 
Practice. ISRN Pharmacology 2013 (2013). http://dx.doi.org/10.1155/2013/641089.

SCIENTIFIC CHALLENGES 
AND IMPLEMENTATION 
BARRIERS TO TRANSLATION OF 
PHARMACOGENOMICS IN CLINICAL 
PRACTICE

Y. W. FRANCIS LAM

CHAPTER 4

4.1 INTRODUCTION

Variability in clinical response to standard therapeutic dosage regimen 
was reported in the 1950s by many pioneers in the field. Since then, the 
association between monogenic polymorphisms and variations of drugs’ 
metabolism, transport, or target had been identified and the vision of per-
sonalized drug therapy in health care envisioned [1, 2]. Pharmacogenom-
ic-guided drug therapy for patient is based on the premise that a large 
portion of interindividual variability in drug response (efficacy and/or tox-
icity) is genetically determined. Despite the widespread recognition of the 
scientific rationale and the clinical implementation of pharmacogenomic 
tests at several major academic medical institutions [3–7], most clinicians 
and researchers engaged in the discipline would agree that the early vision 
of achieving personalized therapy in the form of therapeutic regimens tai-
lored to an individual’s genetic profile remains some years away.
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Broadly speaking, the development and implementation pathways for 
pharmacogenomic tests consist of several stages (Figure 1): fi rst, discov-
ery of pharmacogenomic biomarkers and validation in well-controlled 
studies with independent populations; second, replication of drug-gene(s) 
association and demonstration of utility in at-risk patients; third, develop-
ment and regulatory approval of companion-diagnostic test; fourth, as-
sessing the clinical impact and cost-effectiveness of the pharmacogenomic 
biomarkers; fi fth, involvement of all stakeholders in clinical implementa-
tion. Lessons learned in making pharmacogenomic-guided therapy useful 
to clinicians have identifi ed multiple scientifi c challenges and implemen-
tation barriers existing within these stages, each of which is fueled by 
multitude of stakeholders with varied goals and interests [8]. This paper 
will provide a perspective on these existing challenges and barriers in the 
complex process of implementing pharmacogenomics in clinical practice, 
as well as incorporating pharmacogenomics into the drug development 
process.

4.2 SCIENTIFIC CHALLENGES AND COMPLEXITY

4.2.1 GENETIC VARIABILITIES AND NONGENETIC 
INFLUENCES ON GENOTYPE-PHENOTYPE ASSOCIATION

Many pharmacogenomic biomarkers have been identified over the last de-
cade, but only few of them have been utilized to different extents in clini-
cal setting (Table 1) [9]. One of the major challenges for translating most 
discovered biomarkers to their clinical implementation as genomic tests 
has been the inconsistent replication result of genetic associations, wheth-
er alone or in combination. Traditionally, the candidate gene approach 
incorporating a panel of genes that encode known drug targets, metabo-
lizing enzymes, and membrane transporters is used in pharmacogenomic 
studies to test the hypothesis of an association between single nucleotide 
polymorphisms (SNPs) and a pharmacological or therapeutic endpoint. 
A good example of inconsistent replication result of genetic associations 



is the atypical antipsychotic clozapine with its complex pharmacological 
effects via the dopaminergic, serotonergic, adrenergic, and histaminergic 
receptors within the central nervous system. Over the years, conflicting 
study results exist in the literature for association between clozapine re-
sponse with either SNPs of each known pharmacological receptor subtype 
[10–13], combinations of polymorphisms [14], and metabolizing enzymes 
and transporters [15]. It is also of note that the original association re-
garding combination of polymorphisms was not replicated in a subsequent 
study [16]. The recent identification of yet another new candidate gene for 
clozapine treatment response [15] illustrates the limitation of candidate 
gene approach in that there is always the possibility of involvement of 
other yet-to-be-identified genes, including those that have not been known 
to be linked to the pharmacology of the drug, that could account for ad-
ditional variability in patient’s therapeutic response. More importantly, the 
effect size of most genetic variants is small to modest. When evaluated or 
used alone, most of these markers are likely of insufficient sensitivity and 
specificity to provide clinically useful prediction, especially of efficacy.

The recognition of multiple gene variants, rather than SNPs, each ac-
counting for part of the disposition and response phenotypes, has led to the 
increased use of whole genome approach for discovery of new biological 
pathways and identifi cation of associations between pharmacogenomic bio-
markers and response phenotypes. Genome-wide association study (GWAS) 
approach screens large number of SNPs (up to 2.3 million per array) across 
the whole genome in order to determine the most signifi cant SNPs associ-
ated with response phenotypes. In contrast to the hypothesis-driven candi-
date gene approach, there is no a priori knowledge of specifi c gene for the 
discovery-driven GWAS approach. Rather, the large numbers of SNP analy-
ses test multiple hypotheses and necessitate large sample size, sophisticated 
computing and platforms (e.g., Affymetrix GeneChips), and high cost. In 
addition, the level of signifi cance associated with each test needs to be cor-
rected for multiple hypothesis testings. Refi nement of the GWAS approach 
takes a two-step design, using high-density array to discover the SNP as-
sociations in a population cohort followed by replicating the initial fi ndings 
above the genome-wide signifi cance with additional patient sets in a more 
hypothesis-driven study of suffi cient sample size. While this approach has 
been successfully applied in the pharmacogenomics of clopidogrel, fl uclox-
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acillin, simvastatin, and warfarin [17–22], the implications of the results are 
less clear for other drugs such as the psychotropics [23–30].

A middle-of-the-road approach would be to limit the number of SNPs 
that warrant analysis. Based on the phenomenon of linkage disequilibrium 
among SNPs, whereby two or more SNPs are inherited together in hap-
lotype blocks more frequently than would be expected based on chance 
alone [31], a single representative SNP within a haplotype block could 
serve as a “tag SNP” (tSNP) for the haplotype. By genotyping a smaller 
number of carefully chosen tSNPs to identify haplotype blocks of DNA 
sequences that are inherited together, researchers can capture other com-
monly associated SNPs within the same region. The HapMap database 
created by the International HapMap Project (http://www.hapmap.org/) is 
freely available for selection of these tSNPs. Based on the HapMap data-
base, many GWASs of drug responses have been completed [18, 19, 32, 
33]. It is hoped that some of the scientifi c challenges for study replication 
related to SNP genotyping may be alleviated through this approach [34].

Regardless of the choice of approach to identify the genotype-phenotype 
association, population variations in prevalence and relative importance of 
different allele variants, for example, CYP2D6, HLA-B, UGT1A1, and SL-
C6A4, remind investigators of the importance of ethnicity and population 
stratifi cation [35, 36], which could magnify the sample size requirement for 
statistical power in most pharmacogenomic studies. For example, although 
the algorithms based on the work of Gage et al. [37] and the International 
Warfarin Pharmacogenetics Consortium (IWPC) [38, 39] are clinically use-
ful, they do not include detection of the CYP2C9*8, an allele commonly oc-
curring in African Americans. The lower success with algorithm-based dose 
prediction in African Americans [40] is likely related to exclusion of this 
allele in most dosing algorithms. Another example is HLA-B*1502 being a 
strong predictor of carbamazepine-induced severe cutaneous drug reactions 
in Han Chinese and most Southeast Asians but not in Caucasians, who do 
not carry the allele variant [41–43]. If not accounted for, these ethnicity-or 
population-related variables will confound the results of most pharmacoge-
nomic association studies and could complicate the result interpretation. In 
addition, there is no universal agreement among different test platforms as 
to which allele variant should be tested routinely for some genetic polymor-
phisms, for example, CYP2D6 and UGT1A1.
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In addition to the aforementioned ethnicity-related considerations, 
the drug disposition and response phenotypes can be affected by patient-
specifi c variables. Phenocopying with a change in metabolic phenotype 
secondary to concurrent enzyme inhibitor [44, 45] could create genotype-
phenotype discordance and affect the ability to predict possible drug re-
sponse based on genotype-guided dosing and achievable drug concentra-
tion. Infl ammatory responses elicited by extrahepatic tumors have been 
shown to release cytokines such as interleukin-6 (IL-6) and resulted in 
transcriptional downregulation of the human CYP3A4 gene [46]. There-
fore, lower docetaxel clearance reported in cancer patients could be re-
lated to tumor-associated infl ammation and subsequent transcriptional re-
pression of CYP3A4, potentially leading to unanticipated toxicity despite 
normal enzymatic activity in the patient. IL-6-mediated downregulation 
of cytochrome P-450 enzyme activities also likely contributed to a recent 
report of signifi cant increase in clozapine concentration in a patient with 
infection and infl ammation [47]. An additional challenge for applying 
pharmacogenomic biomarkers in targeted cancer therapeutics is sampling 
of tumor tissue that carries the somatic mutations (e.g., testing for the epi-
dermal growth factor receptor 1 (HER1) mutation in patients treated with 
gefi tinib for nonsmall cell lung cancer and testing for overexpression of 
the human epidermal growth factor receptor 2 (HER2) protein in patients 
receiving trastuzumab for breast cancer). The presence of tumor cell het-
erogeneity might result in intra- and interindividual variabilities in tumor 
tissue content and, hence, measurable level of the biomarker. In spite of 
this limitation, there have been multiple successful clinical applications of 
pharmacogenomics biomarkers in selecting chemotherapeutic drugs [48].

Furthermore, there is an increasing appreciation that genetic hetero-
geneity alone cannot explain interindividual variations in drug responses. 
Yet currently, much less is known about the infl uence of environmental 
variables and gene-environment interactions on drug disposition and re-
sponse phenotypes such as mutations and polymorphisms [49–51]. Epi-
genetics refers to changes in gene expression without nucleotide sequence 
alteration. Environmental factors, through their participation in epigenetic 
mechanisms, could result in many different phenotypes within a popula-
tion. In the not too distant future, pharmacoepigenetic investigations fo-
cusing on studying the interaction among drugs, environment, and genes 
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could provide additional insight of drug response variations beyond the 
level of genetic polymorphisms [52].

4.2.2 ANALYTICAL VALIDITY, CLINICAL VALIDITY, AND 
CLINICAL UTILITY OF PHARMACOGENOMIC BIOMARKERS

After demonstration of a genetic association with response phenotype, 
there is the need of validating the biomarker, regardless of whether it is 
to be developed as a companion diagnostic test. For the purpose of per-
sonalized therapy, a companion diagnostic for a drug can be defined as 
a biomarker that is critical to the safe and effective use of the drug. The 
ACCE (analytical validity, clinical validity, clinical utility and associ-
ated ethical, legal, and social implications (ELSI)) Model Project [53] 
sponsored by the Office of Public Health Genomics, Centers for Disease 
Control and Prevention (CDC), has been recently advocated by some in-
vestigators to be the basis for evaluation of pharmacogenomic biomarker 
tests. Analytical validity determines how well a diagnostic test measures 
what it is intended to measure, regardless of whether it is an expression 
pattern, a mutation, or a protein. Clinical validity measures the ability 
of the test to differentiate between responders and nonresponders, or to 
identify patients who are at risk for adverse drug reactions. The clini-
cal utility measures the ability of the test result to predict outcome in a 
clinical environment and the additional value over nontesting, that is, 
standard empirical treatment.

In 2004, the CDC launched the Evaluation of Genomic Applications 
in Practice and Prevention (EGAPP) initiative, which aims to establish an 
evidence-based process, including assessments of analytical validity, clin-
ical validity, and clinical utility, for evaluating genetic tests and genomic 
technology that are being translated from research to clinical practice. For 
the pharmacogenomics discipline, one often-cited publication was the 
2007 EGAPP Working Group evidence-based review of the literature on 
the use of CYP genotyping for clinical management of depressed patients 
with the selective serotonin reuptake inhibitors (SSRIs). Based on strong 
evidence of analytical validity, possible demonstration of clinical validity, 
and lack of study data to support evaluation of potential clinical utility, the 



working group does not recommend the application of CYP2D6 genotyp-
ing for SSRI pharmacotherapy [54].

Since approval of most CYP genotyping tests by the Food and Drug 
Administration (FDA) is dependent on their technical performance in de-
tecting CYP450 gene variants, the strong evidence of analytical validity 
is to be expected. The weak evidence of association between genotype 
and phenotypes (different metabolic phenotypes, responders versus non-
responders) is also not unexpected, since most SSRIs rely on multiple but 
not necessarily polymorphic enzymes for metabolism and have a fl at dose-
response relationship with wide therapeutic index. The clinical validity of 
the CYP genotyping tests to differentiate response phenotypes is further 
limited by the CYP genotype-metabolic phenotype discordance that can 
occur as a result of drug-drug interactions [44, 45] or environmental in-
fl uences. Given these limitations as well as the lack of cost-effectiveness 
data, it is not surprising that the SSRIs are not good candidates for geno-
type-based pharmacogenomic therapy and, hence, the recommendation of 
the EGAPP Working Group. Other pharmacogenomic biomarkers could 
be better candidates for testing association between specifi c genotype and 
clinical phenotype [55–63], as indicated by published guidelines. Pharma-
cogenetic dosing algorithms [37, 39] based on the patient’s CYP2C9 and 
VKORC1 genotypes and other nongenetic factors (e.g., age, body size, and 
concurrent interacting drug) have been used to determine warfarin dosage 
regimens. As shown for clopidogrel, simvastatin, and warfarin, replica-
tion of the association in multiple cohorts or inclusion of replication data 
would provide further evidence of clinical validity [17, 18, 64, 65].

4.2.3 THE COMPLEXITY OF DEFINING WHAT CONSTITUTES 
CLINICAL UTILITY

Establishing the clinical utility of pharmacogenomic biomarkers has been 
advocated to ensure that their use is appropriate, cost-effective, and ulti-
mately improves clinical outcome in patients. Yet within the clinical and 
scientific communities, there are constant debates with little agreement 
regarding the required levels of evidence for proof of clinical utility of 
diagnostic tests that are scientifically appropriate but at the same time 
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realistically achievable [66–71]. The gold standard for demonstration of 
clinical utility of a drug is the use of randomized controlled trials (RCTs). 
Given the current evidence-based driven clinical environment, many in-
vestigators advocate that hypothesis-driven, prospective, double-blind 
RCTs would provide the ideal approach to validate the clinical utility of 
pharmacogenomic biomarkers. However, within the context of personal-
ized medicine, the biomarker as a companion diagnostic test is intended 
for use with a drug to produce the optimal efficacy and safety. This makes 
it difficult to distinguish the clinical utility of the test that is different from 
that of the drug or the drug-test combination.

In addition, the traditional assessment of evidence of drug effi cacy 
and safety with the use of RCTs may not necessarily portray the benefi t 
of pharmacogenomic biomarkers. Complex disease etiologies, heteroge-
neous patient population, placebo effects, and drug response variabilities 
per se all contribute to statistical power issues that necessitate large patient 
cohort for RCT. All too often, the end result is achievement of small aver-
age benefi t in the entire heterogeneous patient cohort, despite the trial be-
ing costly in terms of time and sample size. In contrast to evidence-based 
practice, the emphasis and value of pharmacogenomics are more geared 
towards incremental advantages in effi cacy and safety for the outliers 
(the poor metabolizers, the ultra-rapid metabolizers, the nonresponders, 
or those susceptible to develop adverse drug reactions) over traditional 
therapy or standard dosing regimen. For example, the IWPC showed that 
a pharmacogenetic dosing algorithm was most predictive of therapeutic 
anticoagulation in 46% of the patients cohort who required <25 mg/week 
or >49 mg/week [39].

Therefore, a balance between the scientifi c demands of RCTs and the 
practical value of genotyping for patient care seems appropriate. Given 
the low prevalence of genetic variants associated with drug response and 
the desire to generate more robust evidence, many investigators and spon-
sors have advocated the use of prospective enrichment design clinical 
trials [72] to include patients who are more likely to respond or at least 
be stratifi ed according to disease subtypes [73] and/or exclude patients 
who are highly susceptible to adverse drug reactions. However, even with 
the assumption of (and sometimes proven) association between genetic 
variabilities and drug response, both advantages and disadvantages exist 



for this study design [8]. A recent simulation study of trial designs sug-
gested that conducting more trials with smaller sample sizes and lessened 
evidence-based criteria might contribute substantially to cancer survival, 
and assessment relying solely on the current traditional, risk-averse trial 
design might slow long-term progress [74]. In this regard, it is of note that 
the FDA recently approved crizotinib and vemurafenib with their respec-
tive pharmacogenomic biomarker tests solely on data from two single-
arm studies. Finally, ethical concerns might preclude conducting RCT in 
patients with specifi c genetic polymorphisms [75]. Examples would be 
prescribing of abacavir in patients tested positive for HLA-B*5701 and 
6-mercaptopurine or azathioprine in homozygous carriers of TMPT muta-
tions. Likewise, conducting a pharmacogenomic add-on as part of a head-
to-head effi cacy comparison of two antipsychotics in patients who are car-
riers of the Del allele of the −141C Ins/Del polymorphism in the dopamine  
D2 receptor gene would be diffi cult. The Del allele is associated with poor 
antipsychotic response [76]; yet, all currently marketed antipsychotics are  
D2 blocker, albeit with different extent of blockade.

Not surprisingly, pharmaceutical companies have very little fi nancial 
incentive to conduct time- and cost-intensive RCTs, especially for out-of-
patent marketed drugs. To move the discipline forward to eventual imple-
mentation, we have to rethink the types of study design and/or the quality 
of study data for evidence of clinical validity and utility. The concept of 
conducting practical clinical trials in real-world setting had been previous-
ly proposed for regulatory decision-making [77, 78]. The recent study by 
Anderson et al. provided evidence of comparative effectiveness between 
pharmacogenetic-guided warfarin therapy in 504 patients versus standard 
care in 1,866 patients and a strong validation to the clinical benefi t asso-
ciated with the use of pharmacogenomic biomarkers in a real world set-
ting [79]. At the “grassroot level,” the concept of practical clinical trial 
can even be modifi ed and adopted on a much smaller scale in clinics or 
physician offi ces. As an example, elimination of tolbutamide is known to 
be 50% and 84% slower in carriers of CYP2C9*2 and CYP2C9*3 vari-
ants, respectively, than in homozygous carriers of CYP2C9*1 [80]. Yet, 
to-date, there is no prospective RCT to evaluate the appropriateness of 
50% to 90% dose reductions for patients who are carriers of the two allelic 
variants. In contrast, evaluating tolbutamide effi cacy can be easily done 
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after implementation of these dosage reductions. Therefore, such effort 
in clinical practice, instead of expensive and time-consuming RCT, could 
constitute the fi rst step of obtaining evidence of clinical utility of CYP2C9 
genotyping in optimizing tolbutamide therapy.

For patient care, a good example for the need of balance between evi-
dence-based medicine and personalized medicine is clopidogrel. Despite 
the extensive evidence of clopidogrel effi cacy linked to CYP2C19 genetic 
polymorphism [81, 82], debates continue over the routine use of CYP2C19 
genotyping to guide clopidogrel therapy [83–85]. This prevents more 
widespread use of the biomarker in individualized therapy, despite the 
signifi cantly higher rates of stent thrombosis and the associated mortality 
rates in carriers of the reduced-function CYP2C19*2 allele. Based on lack 
of outcomes data, the joint clinical alert issued in 2010 by the American 
College of Cardiology and the American Heart Association did not recom-
mend routine genotyping and suggested the need of large, prospective, 
controlled trials. One such trial is the Pharmacogenomics of Antiplatelet 
Intervention-2 (PAPI-2) trial that evaluates the effect of genotype-guided 
antiplatelet therapy versus standard care on cardiovascular events among 
7,200 patients undergoing percutaneous coronary intervention (PCI) 
(clinicaltrials.gov NCT01452152). However, the results will likely not be 
available until 2015. The questions then become are we in the meantime 
sacrifi cing patient care on the insistence of waiting for proof of value via 
the evidence-based approach? If no study results are available in the near 
future, should we focus on steps that can facilitate the genotyping imple-
mentation in clinical setting and examine the cost-effectiveness of geno-
types-guided antiplatelet therapy with a variety of different approaches?

4.2.4 EVALUATION OF COST-EFFECTIVENESS

For many healthcare facilities and systems, it is also critical to assess 
whether a test offers a good return on investment. Therefore, in addition 
to clinical validity and clinical utility, another potential barrier to test 
implementation is demonstration of cost-effectiveness of the compan-
ion diagnostic test. Ideally, the pharmacogenomic biomarker will result 
in cost-effective improved clinical care in patients who will benefit from 

http://www.clinicaltrials.gov


individualized therapy with the drug and avoidance of cost-ineffective 
treatment for patients who likely will not benefit from the drug, either as 
a result of lack of response or increased adverse drug reactions [86, 87].

Traditional cost-effectiveness analysis compares the relative costs and 
outcomes of two different approaches, typically visualized on a cost-ef-
fectiveness plane divided into four quadrants [88]. As mentioned in the 
last paragraph, avoidance of cost-ineffective treatment is one component 
of cost-effective improved clinical care. Along this line, the antipsychotic 
drugs offer an alternative approach to cost-effectiveness evaluation for 
pharmacogenomics biomarkers. With an annual cost that is at least ten 
times higher, the atypical antipsychotic agents are more expensive yet no 
more effi cacious and, hence, likely to be less cost-effective, than the typi-
cal antipsychotic agents [89, 90]. Rather than focusing on using biomark-
ers to predict effi cacy of the more expensive atypical antipsychotic agents 
[10–15], genotyping for the Glycine9 allele of the Ser9Gly polymorphism 
in the dopamine 3 receptor gene [91, 92] might be used to identify patients 
susceptible to tardive dyskinesia, a highly prevalent adverse drug reaction 
associated with the use of the less expensive typical antipsychotic agents. 
The genetic testing might enable appropriate dose reduction for the typical 
antipsychotic agents and lessen the incidence of adverse drug reaction.

Additional approaches of demonstrating cost-effectiveness of phar-
macogenomic-based therapy can range from clinical trial comparing per-
patient cost for specifi c clinical outcome between genotype-based regimen 
and standard regimen [93] to decision model-based study using simulated 
patient cohort [94–96]. Alternative approach exists even within the con-
text of cost-effectiveness comparison between genotype-based regimen 
and standard regimen with no genetic testing. With generic availability of 
clopidogrel, a cost-effectiveness study of the value of pharmacogenomic 
biomarker should compare clopidogrel use in CYP2C19 EMs and UMs 
versus the use of prasugrel or ticagrelor for PMs.

Regardless of the specifi c approach, it should be understood that the 
economic impact and cost-effectiveness of screening could be affected 
by different variables. Two separate studies utilized modeling techniques 
with simulated patient cohorts to evaluate the potential clinical and eco-
nomic outcomes for pharmacogenomic-guided warfarin dosing. While the 
relatively high cost of CYP2C9 and VKORC1 bundled test ($326 to $570) 
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resulted in only modest improvements (quality-adjusted life years, sur-
vival rates, and total adverse rates), the investigators also suggested 
that improvements in the cost-effectiveness can be achieved in several 
ways, specifi cally further cost reduction of the genotyping test and uti-
lizing genotype-guided warfarin dosing algorithm in outliers (patients 
with out-of-range INRs and/or those who are at high risk for hem-
orrhage [97, 98]). The benefi ts of pharmacogenomics-guided therapy 
for patient subpopulations have been discussed earlier. Other variables 
such as different population prevalence of a specifi c variant and cost 
of alternative treatment approaches would also impact the economic 
impact analysis.

In summary, clinical utility and cost-effectiveness cannot be the only 
measures in determining the relative value of pharmacogenomics for drug 
therapy optimization in individual patients. Rather, they should be used 
to supplement the best practice strategies currently in place to achieve 
optimal drug therapy.

4.2.5 REGULATORY APPROVAL OF PHARMACOGENOMIC 
DIAGNOSTIC TESTS

Over the last decade, the FDA has progressively acknowledged the im-
portance of biomarkers and provided new recommendations on pharma-
cogenomic diagnostic tests and data submission. These efforts included 
the publication of FDA Guidance for Pharmacogenomic Data Submis-
sion, Guidance on Pharmacogenetic Tests and Genetic Tests for Heritable 
Markers, and draft guidance for “In Vitro Diagnostic Multivariate Index 
Assays” (IVDMIAs), the introduction of the Voluntary Data Submission 
Program, and formation of an Interdisciplinary Pharmacogenomic Review 
Group (IPRG) to evaluate the voluntary submissions, as well as the ap-
proval and classification of different biomarkers [99]. Obviously, any bio-
marker with FDA approval will generate more confidence for clinicians, 
healthcare facility administrators, and payers, and could enhance test im-
plementation and utilization in the clinical settings. Additional regulatory 
efforts also provide an impetus of pharmacogenomic data submission for 
drug approval and additional research to address the debate over the utility of 



the information incorporated in the revised labels, for example, for clopi-
dogrel [83–85].

Within the United States, there are separate regulatory oversights for 
a pharmacogenomic biomarker developed as an in-house test by a clini-
cal laboratory versus that for an in vitro diagnostic device developed by 
a medical device manufacturer. Quality standards for clinical laboratory 
tests are governed by the Clinical Laboratory Improvement Amendments 
(CLIA). In addition, the laboratories are accredited either by the Col-
lege of American Pathologists, the Joint Commission on Accreditation of 
Healthcare Organizations, or Health Department of each individual state, 
that take into consideration of CLIA compliance and laboratory standard 
practices that are in line with Good Laboratory Practice (GLP) regula-
tions enforced by the FDA. Although there is internal validation within the 
laboratory, there is no external regulatory review process for the test itself.

On the other hand, the GLP regulations govern the testing of in vitro 
medical diagnostic device. Although currently there is no formal regula-
tory process for submission of companion diagnostic tests, the FDA previ-
ously ruled that evaluation and approval of the AmpliChip CYP450 Test 
as an in vitro diagnostic device was required. In addition, the regulatory 
agency had fast track approved trastuzumab with the companion diag-
nostic Hercep Test in 2001 for detecting overexpression of HER2 protein 
in breast cancer tissue by immunohistochemistry and more recently for 
tests that utilize fl uorescence in situ hybridization to amplify the HER2 
gene. Further examples of FDA assuming a greater role were the respec-
tive companion diagnostic tests approved for crizotinib and vemurafenib. 
With the formation of a personalized medicine group within the Offi ce of 
In Vitro Diagnostic Device, Center for Device Evaluation and radiological 
Health, it is likely that more FDA-approved tests would be available in the 
future [100]. Although no similar frameworks for premarketing regulatory 
review and approval of pharmacogenomic biomarkers exist in the Euro-
pean Union and the United Kingdom, there are regulations applicable for 
postmarketing approval. Gefi tinib was approved by the European Medi-
cines Agency (EMA) in June 2009, followed by subsequent approval of a 
companion diagnostic test for HER1 mutations.
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4.3 INTEGRATION OF PHARMACOGENOMIC BIOMARKER 
WITHIN THE HEALTHCARE SYSTEM

There are several challenges and practical aspects related to clinical deci-
sion support infrastructure and training of healthcare professionals (Table 
2) that need to be addressed before pharmacogenomic biomarkers can be 
successfully utilized in any healthcare setting. These are further discussed 
in the following sections.

TABLE 2: Practical issues involved in clinical implementation of pharmacogenomic testing 
in healthcare system.

Issue Challenge

Test performance Reasonable turnaround time for delivery of test result

Interpretation of result Not a straightforward normal versus abnormal interpretation

Education of clinicians is crucial to proper use

Education of health professionals Variable time and content devoted to educating future 
clinicians within health professional schools

Overwhelming information for most current practicing 
clinicians

Cost reimbursement by payers Almost exclusively based on proof of cost-effectiveness

Acceptance by clinicians Potential additional workload

Potential legal liability

Health disparity concern for patient

Acceptance by patients Privacy and discrimination concern

Health disparity concern

Ownership of genetic information

4.3.1 THE MULTIFACET PROCESS OF CLINICAL 
IMPLEMENTATION

Even with a decrease in genotyping cost over time, a relatively low de-
mand for specific biomarker test at institutional clinical laboratories may 



not justify the cost of equipment and technical upkeep associated with in-
house testing. This not only precludes the ideal point-of-care consultation 
at the bedside or within the clinic, but also results in long turnaround time 
for obtaining test results from external clinical laboratories or research 
institutions. The impact of the time delay would depend on the “urgen-
cy” of the test, for example, HER2 expression or CYP2C19 genotyping 
prior to scheduled PCI versus on-the-spot warfarin dosing adjustment or 
in the setting of emergency PCI. Nevertheless, progress has been made in 
this aspect. A recent commentary of pharmacogenomics in primary care 
reported acceptable turnaround time of 24 hours for a feasibility study 
of warfarin pharmacogenetic testing in a family practice clinic [101]. In 
addition, a point-of-care CYP2C19 genotyping device with a turnaround 
time of about an hour has been developed and recently used to explore the 
feasibility of incorporating CYP2C19*2 testing into clinical protocol for 
antiplatelet dosing [102]. In addition to technology advances, the concept 
and adoption of preemptive (preprescription) genotyping [5, 103–105] 
with result stored in electronic medical record for subsequent use would 
also help minimize the inconvenience of time delay in test reporting. The 
issue of health informatics technology will be discussed in a later section.

Not unexpectedly, patients expect healthcare professionals to be able 
to explain the pharmacogenomic diagnostic test results and answer their 
questions regarding treatment access and choices. While interpretation of 
genotype result for deciding the appropriateness of a specifi c drug for a pa-
tient is usually not diffi cult, for example, the presence of the HLA-B*5701 
variant for excluding abacavir therapy in patients with HIV-1 infection, 
the contrary would be true when the genotype result is used for dosing 
adjustment. The challenges for genotype-based doing guidelines [106] are 
related to the multitude of genetic and nongenetic variables that can affect 
drug disposition and response, the signifi cant interindividual variabilities 
in activities of most of the metabolizing enzymes, and the possibility of 
phenocopying with metabolic phenotype change in the presence of drug-
drug interaction [44, 45]. This difference in interpretation complexity re-
lated to the intended use of the test is likely one of the reasons for the FDA 
to previously separate pharmacogenomic biomarkers into three catego-
ries. Despite these challenges, warfarin dosing recommendations based on 
CYP2C9 and VKORC1 genotypes have been incorporated by the FDA into 
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the updated product label in 2010. The dose table provided in the product 
label was reported to provide better dose prediction than empiric dosing 
[99, 107].

However, the inclusion of most of the pharmacogenomics biomarkers 
as informational pharmacogenetic tests by the FDA on the revised labels 
of many drugs, without clear guidance on dosing recommendation and/or 
therapeutic alternatives, usually results in a “knowledge vacuum” for the 
clinicians. All stakeholders would agree that lack of suffi cient pharma-
cogenomics education for health professionals remains a major barrier for 
practical implementation of pharmacogenomics within the healthcare sys-
tem [8]. The need of adequate training was echoed in a recent USA survey 
of more than 10,000 physicians. Although 98% of all respondents agreed 
that the genetic profi le of a patient could infl uence drug therapy decision, 
only 29% had received some pharmacogenomics education during their 
medical training, and only 10% felt they were adequately trained to apply 
the knowledge in clinical practice [108]. Although the International Soci-
ety for Pharmacogenomics recommended incorporating pharmacogenom-
ics education in medical, pharmacy, and health science curricula [109], 
pharmacogenomics courses or materials have only been included to a vari-
able extent at most pharmacy schools [110, 111]. The gap in knowledge 
can currently be addressed through clinical guidelines available from pro-
fessional organizations (Clinical Pharmacogenetics Implementation Con-
sortium, the International AIDS Society-USA panel, the European Science 
Foundation, the British Association of Dermatology, and the Pharmacoge-
nomics Working Group of the Royal Dutch Association for the Advance-
ment of Pharmacy) [55–63, 112], availability of simple dosing algorithm 
such as that for warfarin [79], and further effort to include specifi c dosing 
recommendation in product label [99, 107].

The most logical setting for initial implementation of pharmacogenom-
ics would be healthcare facilities affi liated with academic institutions. The 
concept of pharmacogenomics-guided drug therapy is similar to that of 
clinical pharmacokinetics consultation service (CPCS) or therapeutic drug 
monitoring (TDM) program. In this regard, the familiarity of the CPCS 
or TDM program should be emphasized to clinicians who view the adop-
tion of pharmacogenomics with some skepticism. Likewise, hospitals with 
established CPCS or TDM program might fi nd the task of introducing phar-



macogenetic testing less formidable simply by expanding or modifying 
their existing clinical services. The availability of consultation service, in 
any format, should be complemented by educational training of clinicians 
to achieve specifi c competences. Crews et al. reported signifi cant increase 
in ordering of the CYP2D6 genotyping test one year after its availability 
via the CPCS [3]. In a similar manner, once more clinicians are educated 
about the utility of pharmacogenomic approach to drug therapy, especially 
how to use the information, they would over time integrate pharmacoge-
nomic fi ndings and technologies into their practice.

The importance of healthcare informatics for implementation of phar-
macogenomics in clinical practice could not be overemphasized. At the 
level of patient care, integration of genotyping order template and/or gen-
otype result into a robust system of electronic medical record (EMR) with 
pop-up action alert and order templates for actionable pharmacogenomic 
tests to be used by physicians will be necessary [113, 114]. At the level of 
research, the health information technology would enable organizational 
management of all research data and accessibility by the EMR [115–118]. 
Both the patient care- and research-level informatics should incorporate 
updated information when available and be linked to other health infor-
matics such as billing, clinical laboratory, and clinical trials within the 
healthcare facility. Although adoption of EMR is not universal [119], 
health information technology is a critical area for investment by health-
care system administrators, perhaps through collaborative efforts with the 
technology industry and the government. Successful examples incorpo-
rating a coordinated team approach (physicians, pharmacists, information 
technology and laboratory personnels) with appropriate infrastructure 
support (informatics) to facilitate clinical implementation of pharmacoge-
nomics have been reported at several institutions [3–5].

To fully integrate the multifacet process of the pharmacogenomics 
service, other organizational aspects of clinical decision support should 
include fostering effective communication and collaboration between lab-
oratory staff and clinicians, creating fl exible workfl ow with minimal dis-
ruption to the daily activities of the practitioners, delineating policies and 
reward systems that allow equitable schedule to minimize the additional 
“time burdens” perceived by some healthcare providers, and standardizing 
procedures to incorporate up-to-date pharmacogenomics-related informa-
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tion into formulary review and decision by the pharmacy and therapeutics 
committee. All these steps would facilitate implementation with minimal 
effect on work effi ciency and cost for the healthcare system.

4.3.2 REIMBURSEMENT ISSUES

Successful implementation of pharmacogenomic biomarkers in clinical 
practice not only involves multidisciplinary coordination among physi-
cians, pharmacists, clinical laboratories, health information specialists, 
and healthcare system administrators, but also requires collaborative ef-
forts and willingness from the payer, a significant stakeholder in this en-
deavor. With the current healthcare landscape and the high cost of provid-
ing healthcare, the reimbursability of any particular test plays a significant 
role in deciding its implementation status in most healthcare facilities. 
While the cost of testing for several oncologic biomarkers and thiopurine 
S-methyltransferase in the United States is reimbursed in some hospitals, 
that is not the case for most pharmacogenomic biomarker tests. Both fed-
eral and private payers are reluctant to reimburse the cost of the tests on 
the basis of either (1) lack of evidence of clinical utility (which is usually 
associated with endorsement by professional organizations), (2) tests be-
ing not medically necessary (because it has never been classified by the 
FDA as required test), or (3) lack of cost-effectiveness analysis and/or 
comprehensive comparative effectiveness analysis. Even with the product 
labeling information regarding the impact of CYP variants for warfarin, 
the Centers for Medicare and Medicaid Services recently denied coverage 
for genetic testing except when the test is provided for the purpose of clini-
cal trials. This reluctance stance is consistent with the findings by Cohen 
et al. [120] who reported that most payers do not consider test accuracy 
in identifying subpopulations of interest, test cost, medication adherence, 
and off-label use as relevant factors in their consideration for reimburse-
ment. In their survey of 12 payers, the most consistent determining factor 
is conclusive evidence linking the use of the diagnostic test with health 
outcome.

Even though most payers understand the implications of pharmacoge-
nomics in healthcare and the potential return on investment, their reluctance 



to pay for diagnostic tests costing much less (most costing ≤ $500) than 
what they actually pay for the more expensive drugs (for which the diag-
nostic tests could be useful) primarily refl ects their expectation of dem-
onstration of clinical utility and comparative effectiveness [120, 121]. 
Accordingly, inconsistent assessment of clinical utility and benefi t could 
only result in confusion regarding the appropriate use and interpretation 
of biomarker-based pharmacogenomic diagnostic tests. Hopefully, more 
realistic clinical practice guidelines from diverse groups of organizations 
and expert panels that take into consideration of the issues discussed earli-
er, would pave the way to greater extent of implementation. To that end, it 
is of note that regulatory guidance [122] has been published to support the 
recommendation of the clinical practice guidelines. In addition, additional 
clarifi cation from regulatory agencies regarding defi nition of clinical util-
ity, especially in the context of distinguishing the difference between util-
ity of a diagnostic test versus test/drug combination versus the drug itself, 
would be very helpful in dealing with issues of implementation decision 
and test reimbursement.

It should also be noted that even for trastuzumab, which is reimbursed 
by most insurers, there have been few cost-effectiveness analysis of HER2 
protein expression and treatment with trastuzumab [123]. For most phar-
macogenomic biomarkers, the ideal analyses might not be available until 
years after the diagnostic test is marketed. With limited comprehensive 
pharmacoeconomic data for cost-effectiveness evaluations [124, 125], 
other evaluation approaches ranging from comparing per-patient cost for 
specifi c clinical outcome within in-patient setting [93] to decision model-
based study that utilizes simulated patient cohort [94–96] should be con-
sidered. In addition, all stakeholders should recognize that a “negative” 
cost-effectiveness conclusion based primarily on high cost of genotyping 
needs to be interpreted with the high likelihood of lower cost of genotyp-
ing in the foreseeable future.

Since revenue generation from a pharmacogenomic diagnostic com-
panion test would likely be signifi cantly less than that for a drug, there is 
not much incentive for pharmaceutical companies to include a thorough 
cost-effectiveness analysis as part of drug development. With much less fi -
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nancial resources than pharmaceutical companies, the lack of incentive for 
conducting similar evaluations also applies to diagnostic companies de-
veloping the biomarkers. In a way similar to the mutually benefi cial code-
velopment of proprietary drug and diagnostic test [126, 127], one possible 
solution is for diagnostic companies to collaborate with other stakehold-
ers, such as pharmacy benefi t manager (PBM), to generate the evidence 
deemed necessary for reimbursement by both private payers and regula-
tory agencies. Medco is the fi rst PBM to use claims data in demonstrating 
a 28% reduction in bleeding or thromboembolic events in patients whose 
physicians were provided with CYP2C9 and VKORC1 genotypes results, 
when compared to patients without genetic testing. Concurrent with the 
clinical effectiveness data is a $910 cost saving over a 6-month study pe-
riod in the genotyped group [128]. This type of economic impact data for 
pharmacogenomic testing could be used as evidence of cost-effectiveness 
to insurance payers and administrators of healthcare systems for consider-
ation of potential implementation.

Given the dilemma of insistence of evidence-based data for reimburse-
ment and the limited fi nancial resource of most diagnostic companies in 
developing the biomarker, some paradigm shifts in thinking about ap-
proaches to reimbursement decision could be offered to the payers. In-
stead of a universal reimbursement for all patients tested for a pharma-
cogenomic biomarker, an action-based reimbursement could be instituted. 
Using clopidogrel as an example, the differential reimbursement could 
take the form of no payment for the CYP2C19 genotype test, if no PCI 
is performed and clopidogrel is not prescribed, or even different amount 
of payment based on the risk of PCI. This differential pay concept is cur-
rently in place for most prescription drugs in the form of copayment, as 
well as in coverage amount between within-network versus out-of-net-
work physician visits [110]. Adopting such approach would lessen the fi -
nancial burden for payer since the cost of the one-time test could be easily 
covered through cost saving associated with not using the drug when it is 
ineffective or harmful in specifi c patient populations, and it could provide 
a work-around to some payers’ insisting on conclusive evidence of linking 
diagnostic tests to health outcomes [120].



4.3.3 ETHICAL, LEGAL, AND SOCIAL ISSUES

Implementation of pharmacogenomic testing could result in situations 
where an individual’s disease or medical condition is revealed to other 
parties, however unintended, as well as potential for discrimination and 
ineligibility for employment and insurance. Therefore, even though the 
public is in general receptive to genetic-based prescribing [129, 130], ef-
fort should be directed towards alleviating their concern regarding privacy 
and confidentiality for the purposes of employment and insurance cover-
age decisions. They should be informed that there are ways to both protect 
patients’ privacy whilst at the same time promote the pharmacogenomic 
implementation in clinical practice [131, 132]. In addition, provisions 
from the 2008 Genetic Information Nondiscrimination Act were designed 
to protect individuals from genetic discrimination. Addressing these con-
cerns also encourages informed patients to participate in necessary re-
search [115, 133], for example, comparative effectiveness requested by 
other stakeholders, as well as facilitate healthcare professionals’ willing-
ness to fully integrate genomic services into clinical practice. Despite this, 
other existing concerns include ownership of genetic materials, availabil-
ity and access to the information (both locally and across different health 
system facilities similar to that of the Veterans Affairs EMR), and patient’s 
awareness of the consequences of storing genetic materials and pheno-
typic data. These concerns would need to be addressed to the satisfaction 
of all stakeholders, especially the patients.

Most discussions and debates on the ethical, legal, and social implica-
tions of genetic tests usually make few distinctions between pharmacoge-
nomic biomarkers designed for drug therapy individualization and genetic 
tests predicting disease susceptibility that usually carry a much greater 
potential for abuse. For the purpose of implementation, it would seem ap-
propriate that consent for pharmacogenomic biomarker tests designed to 
individualize their drug therapy (choice and/or dosage regimen) not be 
treated the same extent of scrutiny and requirement as genetic testing for 
disease susceptibility. A lessening in regulation and consent requirements 
for pharmacogenomic markers might make it easier for their implemen-
tation. However, this issue of is very much open for further discussion 
before consensus can be made.
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Social concerns also arise from clinical implementation of pharma-
cogenomic biomarkers within the healthcare systems. In the United States, 
patients are required to pay for some of the cost of the medical service, 
either in the form of copayment or coinsurance. Therefore, an individual 
patient’s socioeconomic status could preclude any potential benefi cial 
pharmacogenomic test information and exacerbate health-care disparities 
among different patients. In addition, for patients who are identifi ed by 
pharmacogenomic test either as nonresponders or at high risk of adverse 
drug reaction to a specifi c drug, the use of pharmacogenomic test as a 
“gatekeeper” of accessibility to drug treatment might pose a problem if 
there is no suitable alternative drug available. As discussed earlier in this 
paper, carriers of the Del allele of the 141C Ind/Del polymorphism of the 
dopamine D2 receptor gene are predicted to have poor response to anti-
psychotic treatment; yet, all currently marketed antipsychotic treatments 
possess blockade. How then should those patients be advised and treated? 
Is it ethical or appropriate if the patient and/or the physician decide to use 
a drug regardless of the unfavorable response and/or risk associated with a 
specifi c genotype? These are relevant questions since the clinical validity 
and clinical utility of most pharmacogenomic tests have not been univer-
sally accepted in clinical practice. Another potential concern is liability 
for the healthcare provider. If a pharmacogenetic test (e.g., CYP2C29) is 
used to guide therapy with one drug (e.g., warfarin) and the patient is later 
prescribed another drug that is also affected by the gene previously tested 
(e.g., phenytoin), should the clinician be responsible to act on the geno-
type results when dosing the second drug? If the answer is affi rmative, 
then some point-of-care mechanism must be in place, for example, in an 
EMR with pop-up action alert containing the pharmacogenomic informa-
tion, so that the clinician is aware of genetic test results relevant to the 
prescribed drug. The immediate implication with availability of pharma-
cogenomic information within the EMR is that the information should not 
be ignored for clinical, ethical, and legal reasons.

Pharmacogenomic biomarker tests are a subset of the increasing uni-
verse of genetic tests advertised over the internet directly to the consumer. 
Most of these direct-to-consumer (DTC) genetic tests are “home brew” 
and not subject to regulatory oversight by the FDA and/or CLIA com-
pliance for test quality standards and profi ciency. In addition, companies 



selling DTC genetic tests can develop and market them without estab-
lishing clinical utility, which contrasts signifi cantly to that demanded for 
pharmacogenomic biomarkers discussed earlier in this paper. The lack of 
regulatory oversight and concern of test validity likely contribute to the 
conclusion that most DTC genetic tests are not useful in predicting dis-
ease risk [134, 135]. Current knowledge suggests that genomic profi ling 
based on a single SNP, a common feature to most DTC genetic tests, is not 
necessarily clinically accurate or useful. In this regard, the recent report 
of a DTC genome-wide platform [136] could provide a useful example 
of the impact of pharmacogenomic profi ling on patient care. Despite the 
increased consumer desire for health-related information and personalized 
medicine, most patients would need the help of clinicians to differentiate 
the relevance of different pharmacogenomics tests. This underscores the 
importance of educating clinicians and preparing them to provide the ap-
propriate test interpretation for clinical decision-making.

4.4 INCORPORATING PHARMACOGENOMICS INTO DRUG 
DEVELOPMENT

Incorporating pharmacogenomics into the entire drug development pro-
cess holds significant potentials for more efficient and effective clinical 
trials as well as financial implications for the industry. However, the issues 
of sufficient sample size, the cost and time associated with conducting a 
RCT to address a specific study hypothesis, and the logistics of ensur-
ing privacy concerns of institutional review board with possible delay in 
study approval and subject enrollment have posted a significant challenge 
and deterrent for the industry to fully incorporate pharmacogenomics in 
different phases of drug development [137]. In addition, the blockbuster 
drug concept and its financial impact on revenue have historically played 
a major role in pharmaceutical drug development. As such, the concept 
of pharmacogenomics and the resultant segmented (and smaller) market 
tailored to a subpopulation with specific genotype have been viewed unfa-
vorably because of lower revenue and decreased profit. However, trastu-
zumab provides a good example of the benefit of paradigm shift in think-
ing about market share and revenue. The manufacturer’s development 
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of trastuzumab along with the diagnostic device results in capturing the 
market share associated with breast cancer drug treatment in all, albeit at a 
smaller number, of the women overexpressing the HER2 protein.

There are additional drug development advantages associated with this 
“mental shift” in business model from the traditional approach of product 
differentiation to the new commerce of market segmentation, sometimes 
even with little or no competition. Identifying patients likely to respond to 
participate in clinical trials could enable benefi ts to be shown in a smaller 
number of patients, resulting in more effi cient phases II and III studies 
conducted in shorter time frame and reducing the overall cost of drug de-
velopment. It could also screen out patients likely to have unfavorable side 
effects that only appear in phase IV postmarketing surveillance studies, 
and such undesirable events sometime could lead to the inevitable and 
unfavorable outcomes of postmarketing product recall and litigation. The 
litigation and fi nancial burden could be further minimized if the pharma-
ceutical company works with regulatory agencies to incorporate the phar-
macogenomic information into a drug label that more accurately describes 
contraindications, precautions, and warnings [138]. Finally, as indicated 
earlier in this paper, benefi cial partnership to develop and market a com-
panion diagnostic test can also lead to additional revenue stream [127].

With more than 50% of new chemical entities failing in expensive 
phase III clinical trials, high attrition rate in drug development is a well-
known fact for the pharmaceutical industry, and a much less discussed and 
explored role of pharmacogenomics is the potential of “rescuing” drugs 
that fail clinical trials during drug development. The prime example for 
this benefi t is gefi tinib, which originally was destined to failure because 
only a small number of patients with small cell lung cancer responded to 
the drug. However, in 2004, published results showed that tumor response 
to the drug was linked to mutations in HER1. Subsequently, development 
of pharmacogenomic biomarker tests for HER1 mutations in patients en-
ables identifi cation of responders for gefi tinib [139–143]. This example 
showed that investigational drugs found to be ineffective or unsafe during 
phase II or III clinical trials might deserve a second look from the per-
spective of pharmacogenomics. Another example is lumiracoxib, a selec-
tive cyclooxygenase-2 inhibitor that was withdrawn in 2005 from most 
global pharmaceutical markets because of hepatotoxicity. Recently, Singer 



et al. reported a strong association between patients with HLA-DQ vari-
ant alleles, especially HLA-DQA1*0102, and elevated transferase levels 
secondary to lumiracoxib-related liver injury [144, 145]. As a result, the 
manufacturer of lumiracoxib has submitted an application to the EMA for 
its use in targeted subpopulations.

Therefore, as demonstrated by gefi tinib and possibly lumiracoxib, 
“failing” drugs can be further developed with a smaller target population 
with the genetic profi le predictive of improved effi cacy and/or reduced 
toxicity. This result can then be used for approval with appropriate product 
label containing the pharmacogenomic information. In reality, a go-ahead 
decision by the pharmaceutical company for such “drug rescue” with po-
tential drug approval is dependent not only on the cost and time associated 
with developing a companion diagnostic test but also measurable better 
effi cacy than competitor drugs in a smaller number of patients. To facili-
tate this aspect of drug development, regulatory “decision incentives” in 
the form of conditional approval with subsequent requirement of phase 
IV trial or approval similar to those developed and submitted under the 
Orphan Drug Act could go a long way to provide suffi cient incentive for 
the pharmaceutical industry.

Regulatory agencies worldwide, primarily the FDA, the EMA, and the 
Japanese Pharmaceuticals and Medical Devices Agency, have recognized 
the opportunity to utilize pharmacogenomics in predicting drug response 
and incorporated pharmacogenomic information into revised labels of ap-
proved drugs as well as regulatory review, for example, by the IPRG of the 
FDA, that is independent of the drug review itself. Nevertheless, relevant 
drug effi cacy and safety data and issues that are important for regulatory 
decision-making were developed long before the era of pharmacogenomics, 
and it is unclear how traditional regulatory review would approach the inclu-
sion of any pharmacogenomic data in a new drug application (NDA) pack-
age. As described earlier, the FDA has developed multidisciplinary work-
shop [146] as well as regulatory initiatives such as the Voluntary Exploratory 
Data Submission in the USA, and the Pharmacogenomics Briefi ng Meetings 
in Europe and Japan have attempted to encourage the use and submission of 
pharmacogenomic data by the pharmaceutical industry. However, concerns 
and questions remain regarding what type of pharmacogenomic data is nec-
essary and when they should be incorporated in the NDA process [8].
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4.5 CONCLUSION

Although significant scientific and technological advances enable iden-
tification of variants in (or haplotypes linked to) genes that regulate the 
disposition and target pathways of drugs, translating the pharmacogenom-
ic findings into clinical practice has been met with continued scientific 
debates, as well as commercial, economical, educational, ethical, legal, 
and societal barriers. Despite the well-known potentials of improving drug 
efficacy and safety, as well as the efficiency of the drug development pro-
cess, the logistical issues and challenges identified for incorporating phar-
macogenomics into clinical practice and drug development could only be 
addressed with all stakeholders in the field working together and occasion-
ally accepting a paradigm change in their current approach.
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CHAPTER 5

CLINICAL PROTEOMICS AND OMICS 
CLUES USEFUL IN TRANSLATIONAL 
MEDICINE RESEARCH

ELENA LÓPEZ, LUIS MADERO, JUAN LÓPEZ-PASCUAL, 
AND MARTIN LATTERICH

5.1 INTRODUCTION

5.1.1 THE POST-GENOME ERA: ADVANCES IN CLINICAL 
PROTEOMIC RESEARCH

Improved biomarkers are of vital importance for cancer detection, diagno-
sis and prognosis. While significant advances in understanding the molec-
ular basis of disease are underway in genomics, proteomics will ultimately 
delineate the functional units of a cell: proteins and their intricate interac-
tive networks and signalling pathways in health and disease.

Much progress has been made to characterize thousands of proteins 
qualitatively and quantitatively in complex biological systems by the use 
of multi-dimensional sample fractionation strategies, mass spectrometry 
(MS) and protein micro-arrays. Comparative/quantitative analysis of high-
quality clinical biospecimens (e.g., tissue and biofl uids) of the human cancer 
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proteome landscape can potentially reveal protein/peptide biomarkers re-
sponsible for this disease by means of their altered levels of expression, 
post-translational modifi cations (PTMs), as well as different forms of pro-
tein variants. Despite technological advances in proteomics, major hurdles 
still exist at every step of the biomarker development pipeline [1-12].

In the post-genome era, the fi eld of proteomics has incited great inter-
est in the pursuit of protein/peptide biomarker discovery especially since 
MS has been shown to be capable of characterizing a large number of 
proteins and their PTMs

In complex biological systems, in some instances even quantitatively. 
Technological advances such as protein/antibody chips, depletion of mul-
tiple high abundance proteins by affi nity columns, and affi nity enrichment 
of targeted protein analytes as well as multidimensional chromatographic 
fractionation, have all expanded the dynamic range of detection for low 
abundance proteins by several orders of magnitude in serum or plasma, 
making it possible to detect the more abundant disease-relevant proteins 
in these complex biological matrices [13-21]. However, plasma and cell-
extract based discovery research studies aimed at identifying low abun-
dance proteins (e.g. some kinases) are extremely diffi cult. Therefore, it 
is necessary to develop signifi cant technological improvements related 
to identifying this low abundance, although high biological impact mol-
ecules. Moreover, if these protein kinases to be studied contain PTMs, it 
is important to know that spatial and temporal factors can decrease the ef-
fi ciency of our study (e.g. many kinases are regulated by phosphorylation 
of the activation loop, which then directly refl ects cellular kinase activity).

Furthermore, proteomics has been widely applied in several areas of 
science, ranging from deciphering molecular pathogenesis of diseases, the 
characterization of novel drug targets, to the discovery of potential diag-
nostic and prognostic biomarkers, where technology is capable of iden-
tifying and quantifying proteins associated with a particular disease by 
means of their altered levels of expression [22-24] and/or PTMs [25-27] 
between the control and disease states (e.g., biomarker candidates). This 
type of comparative (semi-quantitative) analysis enables correlations to 
be drawn between the range of proteins, their variations and modifi cations 
produced by a cell, tissue and biofl uids and the initiation, progression, 
therapeutic monitoring or remission of a disease state.
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PTMs including phosphorylation, glycosylation, acetylation and oxi-
dation, in particular, have been of great interest in this fi eld as they have 
been demonstrated to being linked to disease pathology and are useful 
targets for therapeutics.

In addition to MS-based large-scale protein and peptide sequencing, 
other innovative approaches including self-assembling protein microar-
rays [28] and bead-based fl ow cytometry [29] to identify and quantify pro-
teins and protein- protein interaction in a high throughput manner have 
furthered our understanding of the molecular mechanisms involved in dis-
eases.

In summary, clinical proteomics has come a long way in the past de-
cade in terms of technology/platform development and protein chemistry, 
to identify molecular signatures of diseases based on protein pathways 
and signalling cascades. Hence, there is great promise for disease diagno-
sis, prognosis, and prediction of therapeutic outcome on an individualized 
basis.

5.1.2  PROTEOMIC HINDRANCES FOR DISCOVERY OF TRUE 
CANDIDATE BIOMARKERS

Why is there such a disconnection between biomarker discovery using 
modern proteomic technologies and biomarker qualification requiring 
much more stringent analytical and clinical criteria? Several major ob-
stacles have been suggested as being responsible for this discrepancy, in-
cluding:

1. technological variability within/across proteomic platforms;
2. suitable/unsuitable biospecimen collection, handling, storage and 

processing;
3. capacity/incapacity of credentialing biomarker candidates prior 

to costly and time-consuming clinical qualification studies using 
well-established methodologies;

4. necessity for knowledge in the evaluation criteria required for these 
distinct processes in the pipeline and in regulatory science by the 
research community;
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5. insufficient publicly available high-quality reagents and data sets 
to the cancer research community;

6. need for improved data analysis tools for the analysis, characteriza-
tion, and comparison of large datasets and multi-dimensional data;

7. necessity for proper experimental study design when performing 
studies involving clinical samples in biomarker studies.

If proteomics is to be successfully introduced into clinical diagnostics, 
universally accepted metrics will be necessary at many steps along the 
way, to ensure that changes observed are attributable to biological states, 
not workfl ow variability. In addition, with the combination of different 
OMICS- technologies, more reliable data can be achieved. A high number 
of OMICS-combination-approaches are available for clinical research. It 
is always necessary to test different tools in order to raise a greater level 
of effi ciency for your clinical study [30]. Figure 1 illustrates the proteomic 
hindrances for discovery of true (as opposed to surrogate) candidate bio-
markers.

With regards to discovery, semi-quantitative proteomic methodologies 
routinely used for biomarker research between normal and diseased states 
are differential two-dimensional gel electrophoresis (2DGE), comparative 
label-free and labelling approaches [e.g., 18O labelling, Isotope Coded Af-
fi nity Tags, Isobaric Tag for Relative and Absolute Quantitation (iTRAQ), 
Stable Isotope Labelling with Amino Acids in Cell Culture (SILAC), Ab-
solute Quantitation (AQUA), Multiple Reaction Monitoring (MRM)] fol-
lowed by liquid chromatography mass spectrometry (LC-MS). Although 
such comparative analysis yields important information on possible 
changes as a result of disease, these current methods in clinical proteomics 
based, for the most part, on MS and its combination with 2DGE, chro-
matography or biobead technology, might have limitations related to the 
sensitivity concentration level.

5.1.2.1 SAMPLE PREPARATION

When using the previously mentioned proteomic tools, sample preparation 
is one of the most crucial processes in proteomic analysis and biomarker 
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FIGURE 1: Proteomic hindrances for discovery of true candidate biomarkers. This figure 
illustrates, in a simple manner, relevant discovery aspects of true candidate biomarkers. 
Points to be considered are: (a) technological and biological variability within/across 
proteomic platforms; (b) suitable/unsuitable biospecimen collection, handling, storage and 
processing; (c) capacity/incapacity of credentialing biomarker candidates prior to costly and 
time-consuming clinical qualification studies using well-established methodologies; (d) the 
necessity for knowledge in the evaluation criteria required for these distinct processes in 
the pipeline and in regulatory science by the research community; (e) insufficient publicly 
available high-quality reagents and data sets to the cancer research community; (f) need 
for improved data analysis tools for the analysis, characterization, and comparison of large 
datasets and multi-dimensional data; and (g) necessity for proper experimental study design 
when performing studies involving clinical samples in biomarker studies. This implies 
a network-connectivity in relation to: (h) ensuring the choice of the correct strategy, (i) 
conclusion of the clinical proteomic research study when reaching a reprensative number 
of patients in order to achieve reliable data, (j) to always carry out inter- and intra-assays of 
your sample-preparations in order to reproduce your data, (k) to combine different OMIC-
Tools to complement and verify the efficiency of your results, (l) Collaboration between 
clinicians and expert OMIC-scientists is necessary for success.
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discovery in solubilized samples. Chromatographic or electrophoretic pro-
teomic technologies are also available for separation of cellular protein 
components. There are, however, considerable limitations in currently 
available proteomic technologies as none of these allows for the analy-
sis of the entire proteome in a simple step because of the large number 
of peptides, and because of the wide concentration dynamic range of the 
proteome in clinical blood samples. The results of any experiment under-
taken depend on the condition of the starting material. Therefore, proper 
experimental design and pertinent sample preparation are essential for ob-
taining meaningful results, particularly in comparative clinical proteomics 
in which one is looking for minor differences between experimental (dis-
eased) and control (non-diseased) samples [31].

Homogenization is one of the preparative steps employed for prepara-
tion of biological samples for proteomic analysis, and includes processes 
such as mixing, stirring, dispersing, or emulsifying in order to change 
the sample’s physical, but not chemical properties. Homogenization for 
proteomics incorporates fi ve main categories: mechanical, ultrasonic, 
pressure, freeze-thaw, and osmotic/detergent lyses. Mechanical homog-
enization for tissues and cells can be accomplished by devices such as 
rotor–stator, and open blade mills (e.g., Warring blender and Polytron), or 
pressure cycling technology (PCT) such as French presses. Rotor–stator 
homogenizers can homogenize samples in volumes from 0.01 mL to l20 L 
depending on the tip and motor used.

For optimum results, the tissue should be cut into slices, the size of 
which is slightly smaller than the diameter of the applied stator, as larger 
samples may clog the generator’s inlet, making it impossible to achieve ef-
fective homogenization. Depending on the chemical resistance of a cutting 
tool, it is possible to homogenize samples under acidic or basic conditions 
in order to prevent degradation by endogenous enzymes. Heat transfer 
to the processed mixture is low to moderate and the process usually re-
quires external cooling. Sample loss is minimal compared to PCT, where 
by means of a pressure-generating instrument (Pressure Bioscience, West 
Bridgewater, MA) alternating cycles of high and low pressure are applied 
to induce cell lysis [32,33].
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In relation to protein solubilisation, proteins in biological samples are 
generally found in their native state associated with other proteins and 
often integrated as a part of large complexes, or into membranes. Once 
isolated, proteins in their native state are often insoluble. Breaking inter-
actions involved in protein aggregation (e.g., disulfi de hydrogen bonds, 
van der Waals forces, ionic and hydrophobic interactions) enables disrup-
tion of proteins into a solution of individual polypeptides, thereby promot-
ing their solubilisation. However, because of the great heterogeneity of 
proteins and sample-source related interfering contaminants in biological 
extracts, simultaneous solubilisation of all proteins remains a challenge. 
Integration of proteins into membranes, and their association and com-
plex formation with other proteins and/or nucleic acids hamper the process 
signifi cantly. No single solubilisation approach is suitable for every pur-
pose, and each sample and condition requires unique treatment. Sample 
solubilization can be improved by agitation or ultrasonifi cation, but an 
increase in temperature should be avoided. The selection of the appropri-
ate solubilisation protocol and buffers has specially been facilitated by the 
availability of commercial kits, although it is somewhat more expensive 
than routine reagent methods [34,35].

To avoid protein modifi cations, aggregation, or precipitation resulting 
in the occurrence of artifacts and subsequent protein loss, sample solubi-
lization process requires the use, in the sample buffer of: (1) chaotropes 
(urea, thiourea, charged guanidine hydrochloride, for ex.) that disrupt hy-
drogen bonds and hydrophilic interactions enabling proteins to unfold with 
ionizable groups exposed to solution; (2) ionic, non-ionic and zwitterionic 
detergents (SDS, CHAPS, or Triton X-100); (3) reducing agents that dis-
rupt bonds between cysteine residues and thus promote the unfolding of 
proteins (DTT/dithioerythritol (DTT/DTE) or tributylphosphine (TBP) or 
tris-carboxy ethyl phosphine (TCEP)) and (4) protease inhibitors [36].

Although there is no general procedure to select an appropriate de-
tergent, nonionic and zwitterionic detergents such as CHAPS and Triton 
X series are less denaturing than ionic detergents, and have been used 
to solubilise proteins for functional studies. On the other hand, ionic de-
tergents are strong solubilizing agents that lead to protein denaturation. 
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However, sodium cholate and deoxycholate are soft detergents compatible 
with native protein extraction, although variables like buffer composition, 
pH, salt concentration, temperature, and compatibility of the chosen deter-
gent with the analytical MS procedure, and the way in which to remove it 
(by dialysis for example) are all crucial factors that need to be considered. 
Usually, tissue disruption and cell lyses require the combination of de-
tergent and mechanical methodologies [35]. The proper use of the above 
reagents, together with the optimized cell disruption method, dissolution, 
and concentration techniques collectively determines the effectiveness of 
proteome solubilization methodologies.

All the previously detailed information, coupled to the use/study of 
blood, as a biospecimen in discovery research (a commonly used biospeci-
men which is highly complex and which has a wide dynamic range of pro-
tein concentrations), makes it is very diffi cult to discover (measure) low 
abundance proteins (potential biomarkers). One solution to this problem is 
to develop and apply nanotechnology in clinical proteomics, as well as the 
throughput of analytical measurement systems while lowering their cost. 
Not only does nanotechnology have the potential of fulfi lling many crite-
ria required for the advancement of clinical proteomics, essential changes 
in the physicochemical properties of substances on their conversion to the 
nanostructured state, but it has also made it possible to create effi cient 
systems for drug delivery to targets.

In addition, blood cells offer unique insights into disease processes. 
Therefore, erythrocytes, granulocytes, monocytes, lymphocytes, and 
platelets are of special interest for clinical proteomics. Cytometry is cur-
rently widely used as an analytical tool for clinical cell analysis directly 
from anticoagulated whole blood and also for cell sorting to generate pure 
populations of cells from heterogeneous and highly integrated mixtures as 
are found in the majority of biological environments. Elispot, slide based 
cytometry, and tissue arrays together with high-content screening micros-
copy are further upcoming techniques in cytoproteomics. The major chal-
lenge for this type of preanalytical standardization is related to the use of 
fresh samples, either for direct multiparameter analysis of cellular pro-
teomics in whole blood or body fl uids without pre-separation, or for cell 
sorting and enrichment strategies for subsequent proteomic and functional 
genomic analysis [37].
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5.1.3 NANOTECHNOLOGY TO COMPLEMENT CLINICAL 
PROTEOMICS

The identification of unique patterns of protein expression, or biomarkers, 
associated with a specific disease is one of the most promising areas of 
clinical proteomics. There is an urgent need to discover new biomarkers 
that are useful for early disease diagnosis. Recently, it has been recognized 
that the measurement of a panel of multiple biomarkers has the potential 
to achieve a much higher sensitivity and specificity compared with any 
single biomarker in the past. Moreover, the highest informative content 
is thought to reside in the low molecular weight (LMW), low abundance 
fraction of biological fluids. Nanotechnology offers new approaches to 
harvest low abundant panels of biomarkers. For cancers, if the disease can 
be detected prior to the onset of metastases, this can lead to a significant 
reduction in cancer deaths [38].

The envisioned role of nanotechnology is twofold:

1. to provide access to previously inaccessible data as related to 
“-omic” technology components with unparalleled efficiency and 
resolution;

2. to enable innovative therapeutic modalities that leverage the vali-
dated system biology outputs for exquisitely specific individual-
ized therapy.

Systems biology has the potential for utilizing subtle biological clues 
(e.g. “-omic” technology components) for early detection of disease, pre-
dicting patient response to therapy, and identifying biomarkers to enable 
effective targeting of drug- delivery modalities to the disease site. The 
fi eld of systems biology is still evolving, however there is strong evidence 
in scientifi c literature supporting the promise of nanotechnology as an 
enabling contributor for extracting the elusive “-omic” data for clinical 
analysis.

For example, investigators have recently shown the ability to repro-
ducibly enhance the presence of the low molecular weight proteome from 
serum and plasma samples to differentiate the stages of disease as well as 
predict a patient’s response to therapy. As the utility of nanotechnology 
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expands to other “-omic” technologies, the ability to compare and inte-
grate multiple panels of data subsets will tremendously strengthen the val-
idation process for biomarker identifi cation. Furthermore, nanotechnology 
has already demonstrated a clinical impact upon drug-delivery strategies 
for a variety of ailments, particularly cancer indications.

The inherent scale of nanotechnology enables a library combining 
surface modifi cations (e.g. targeting moieties, charge modifi cations, 
stealth) of nanoparticulates, as well as control over size, shape, and 
other particle characteristics pending on particle material. This variety 
of options allows the rational design of personalized therapies that are 
predicated upon established biomarker evidence through system biol-
ogy discovery, image analysis, mathematical modeling and access to ef-
fective chemotherapeutics and other agents [39]. The development of 
nanotechnology presents an unprecedented opportunity for point-of-care 
testing devices by enabling both greater analytical sensitivity and the 
ability to multiplex protein and nucleic acid marker evaluations in the 
same assay [40]. It is certain that nanotechnology has yet to impart an 
enabling contribution towards the overall movement to individualized 
medicine; thus, the potential of nanomedicine coupled to clinical pro-
teomics remains undeniable.

Currently, one of the most promising nanotechnological proteomics 
under development for medical research is biosensor-based nanodiagnos-
tics. An example of this is the development of a magneto-nano sensor pro-
tein chip and a multiplex magnetic sorter based on magnetic nanoparticles 
that allow rapid conversion of discrete biomolecule binding events into 
electrical signals, which can detect target molecules down to the single 
molecule level in less than an hour [41,42]. In consequence, nanotechnol-
ogy in clinical proteomics today, implies a new medical research direction, 
dealing with the creation and application of nanodevices for carrying out 
proteomic analyses in the clinic. Nanotechnological progress in the fi eld 
of atomic force microscopy facilitates clinical studies on the revelation, 
visualization and identifi cation of protein disease markers, in particular 
of those with sensitivity of 10–17 M, much greater than the sensitivity of 
commonly adopted clinical methods. Also, at the same time, implementa-
tion of nanotechnological approaches into diagnostics permits the creation 
of new diagnostic systems based on the optical, electro-optical, electro-
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mechanical and electrochemical nanosensoric elements at high operating 
speed [42].

In summary, nanobiotechnology is a new focus in technological sci-
ence. It plays a key role in the creation of nanodevices for the analysis 
of living systems on a molecular level. Moreover, nanomedicine allows 
for improved understanding of human life while using the knowledge on 
human organism at a molecular level. The use of nanotechnological ap-
proaches and nanomaterials opens new prospects for the creation of drugs 
and systems for their directed transport. Implementation of optico-biosen-
soric, atomic-force, nanowire and nanoporous approaches into genomics 
and proteomics will signifi cantly enhance the sensitivity and accuracy of 
diagnostics and will shorten the time for diagnostic procedures, thus un-
doubtedly improving the effi ciency of medical treatment.

5.1.4 BIOINFORMATICS: USEFUL FOR CLINICAL 
PROTEOMICS

Computational biology covers a wide spectrum of techniques devoted to 
the generation and use of useful information from structure, sequence or 
relationships among biological analytes (DNA, RNA, proteins, macromo-
lecular complexes, etc.). Those methods most useful in clinical studies, 
including biomarkers research, are chiefly the following:

• Next Generation Sequencing (NGS) is recently being used in a detailed 
study of genes involved in ColoRectal Cancer (CRC).The authors demon-
strated that sequencing of whole tumour exomes allowed prediction of the 
microsatellite status of CGC, and also, facilitating the putative discovery of 
relevant mutations. Additionally, NGS is applicable to formalin-fixed and 
paraffin embedded material, allowing the renewed study of relevant clinic 
material in the pathology departments [43, 44].

• Once modified residues have been found in sequencing or proteomic stud-
ies, routine sequence-to-sequence and sequence-to-structure comparisons 
(MSA: multiple sequence analysis) allow to obtain valuable information 
about the functional implications related to the mutated residues in the 
protein context. Multiple alignments of proteins, and chiefly those based 
on the comparison of experimentally obtained three-dimensional atomic 
structures (structural alignments), are a very valuable source of information 
related to the evolutionary strategies. This is then followed by the different 
members of a family of proteins to conserve or modify their functions and 
structures [45].
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The analysis of structural alignments allows the detection of at least 
three types of regions or multiple alignment positions according to conser-
vation: (a). Conserved positions, usually the key for function or structure 
maintenance. (b). Tree-determinant residues, conserved only in protein 
subfamilies and related to family-specifi c active sites, substrate binding 
sites or protein-protein interaction surfaces. These sites contain essential 
information for the design of family-specifi c activator or inhibitor drugs 
[46]. And (c), positions that correspond to compensatory mutations that 
stabilize the mutations in one protein with changes in the other (Correlated 
mutations). These sites are very effective for the detection of protein- pro-
tein interaction contacts [47]. These last ones allow for the selection of the 
correct structural arrangement of two proteins based on the accumulation 
of signals in the proximity of interacting surfaces.

• Because of the sequence-to-structure comparison, and in absence of experi-
mental crystal structures, the homology modelling methods, (also called 
comparative modelling or knowledge-based modelling), can develop a 3D 
model from a protein sequence based on the structures of a crystallized 
homologous protein. The method can only be applied to proteins with a 
common evolutionary origin: as only for proteins that are hypothesized to 
be homologous, this assertion implies that their three-dimensional struc-
tures are conserved to a greater extent than their primary structures. In the 
event where good homology hypothesis cannot be seconded, alternative 
methods can be applied in order to obtain a putative 3D structure. These 
procedures, known as “far-homology modelling” or “threading” methods, 
provide structures with lesser confidence compared to those generated us-
ing homology modelling methods.

• Data on the 3D structure of the active centre of a protein of interest and/or 
its natural ligands can be used as a basis for the design of effective drugs. 
This rational drug design is usually performed via multiple docking ex-
periments in the active centre of the protein of interest. This requires the 
use of advanced software such as Autodock-4 [48]. Algorithms such as 
Autodock-4 allow the evaluation of not only the docking to a rigid model 
of the active centre, and also a certain mobility and adaptation of the side 
chain of enzyme residues to the ligand shape. Commonly, all the calculated 
binding conformations to the target protein obtained in every docking run 
are clustered according to scoring criteria (as “the lowest binding energy 
model” or “the lowest energy model representative of the most-populated 
cluster”) and sorted according to their estimated free energy of binding. 
These computer strategies are a useful cost-reducing tool to prospect and 
model new molecules with potential inhibiting properties or even success-
ful future drugs. Lately, the rational drug design approach has been used 
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for putative cancer therapies, in particular the pharmacological reactivation 
of mutant p53 [49]. This promising strategy implies the simultaneous use 
of several ways for the identification of small molecules that target mutant 
p53, including “de novo” design and screening of chemical libraries.

• To conclude this section, molecular dynamics (MD) techniques are routine-
ly used to obtain refined models for protein structure, protein-protein and 
protein- ligand interactions. MD is a computational simulation technique in 
which atoms within molecules are allowed to interact for a period of time 
according to the principles of physics. In the case of proteins, the relevant 
forces taken into account are the electrostatic interactions (of attraction or 
repulsion), Van der Waals interactions, and the properties of the covalent 
bond (length, angle, and dihedral angle). As a rule, simulation times for 
macromolecular protein complexes are up to 20 ns and the number of atoms 
of the simulated systems is in the order of up to 250,000, including solvent 
molecules. MD tools have been used to simulate the individual behaviour 
of small protein or peptides [50], protein-protein interfaces and ligand-
protein relationship in catalytic macromolecular complexes with GTPase 
activity [51,52] or kinases involved in cell signalling pathways (e.g. Src 
tyrosine kinase [53] or the protein kinase B/Akt [54]).

5.1.5  SAMPLE BIOBANKING OMPLEMENTATION NECESSARY 
FOR CLINICAL PROTEOMICS

A Biobank contains several hundred thousand samples from a broad range 
of anatomic sites, diseases and with diverse ethnic representation. All bio-
specimens are obtained using stringent standard operating procedures and 
ethical protocols to provide assurance to the researcher that the materials 
will meet their scientific needs.

In order to require tissue samples with accompanying clinical outcome 
data, it is necessary to maintain a BioReserve repository of frozen and 
fi xed tissues with patient follow-up data.

Through Biobank and BioReserve repositories, it is, thus, possible to 
provide a rapid delivery of human tissue, biofl uids and tissue derivatives 
that best meet the research requirements. Moreover, during a standard 
collection protocol for sample biobanking, human tissues or bodyfl uids 
and clinical data can also be custom collected to meet unique require-
ments. Each donor site uses a standardized clinical data form and pathologic 
data is classifi ed using codes for anatomic site, morphology and behav-
iour [55].
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As a fi nal check, clinical data management associates review records 
for each case to ensure complete and consistent data. The stringent evalu-
ation and classifi cation process ensures that scientists receive clinically 
relevant data to help them in their research. Each biospecimen is assessed 
using uniform quality assurance tests. The pathologists independently con-
fi rm the anatomic site and diagnosis for each tissue procured. In addition, 
the lab researchers assess the RNA, DNA, proteins etc. integrity of each 
tissue received. This information is pr ovided to scientists before purchase 
so they can accurately select the samples which will best meet their needs. 
This reduces the number of failed OMICS and clinical experiments due to 
inappropriate or poor quality samples [56].

5.2 CONSIDERATIONS AND FUTURE NEEDS

5.2.1 THE CONVENTIONAL BIOMARKER DEVELOPMENT 
PIPELINE

It is necessary to integrate genomics, proteomics, nanobiotechnology/
nanomedicine, bioinformatics and biobanking-sample methodologies 
with clinicians. The mapping of the human genome represents a real mile-
stone in medicine and has led to an explosion in discoveries and transla-
tive research in life sciences. Indeed, this important knowledge base has 
enabled rapid development in the areas of diagnostics, gene therapy, new 
drug targets discovery, and personalized therapies [57,58]. The expansion 
of biological knowledge through the Human Genome Project (HGP) has 
also been accompanied by the de velopment of new high throughput tech-
niques, providing extensive capabilities for the analysis of a large number 
of genes or the whole genome. The completion of the human genome, 
however, has presented a new and even more challenging task for scien-
tists: the characterization of the human proteome. Unlike the genome project, 
there are major challenges in defining a comprehensive Human Proteome 
Project (HPP) due to (a) a potentially very large number of proteins with 
PTMs, mutations, splice variants, etc.; (b) the diversity of technology 
platforms involved; (c) the variety of overlapping biological “units” into 
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which the proteome might be divided for organized conquest; and (d) sen-
sitivity limitations in detecting proteins present in low abundances.

The conventional biomarker development pipeline involves a discov-
ery stage followed by a qualifi cation stage (commonly known as biomarker 
validation) on large cohorts, prior to clinical implementation and design-
ing complementary OMICs strategies. In common practice, the discovery 
stage is performed on a MS-based platform for global unbiased sampling 
of the proteome, while biomarker qualifi cation and clinical implementation 
generally involve the development of an antibody-based protocol, such as 
the commonly used enzyme linked ELISA assays. Although this process 
is potentially capable of delivering clinically important biomarkers, it is 
not the most effi cient process as the latter is low-throughput, very costly 
and time-consuming. In many cases, affi nity reagents for novel protein 
candidates do not even exist and it is diffi cult to multiplex targets without 
creating signifi cant interferences and cross-reactivity. These limitations of 
immunoassays have called for the development of alternative approaches. 
The recent surge in the advance of proteomic technologies centering on 
targeted MS and protein microarrays has provided great opportunities for 
researchers to use them as “bridging technologies” for clinical proteomic 
and OMICS investigation of disease-relevant changes in tissues and 
biofl uids.

Some recent studies that combine rigorous study design with a focused 
mass spectrometry approach, promise to streamline the discovery and val-
idation process [59,60]. These studies deviate from the traditional brute-
force discovery efforts, geared to fi nd minute differences between often 
complex samples, to employ pre-selection and MRM-based quantifi cation 
strategies. This approach signifi cantly enhances the fi delity of detecting 
signifi cant differences between even low abundance biomarkers. To put it 
into the perspective of the proverbial “needle in a haystack” analogy the 
“haystack” has not become smaller; however, the pre-selection of poten-
tial biomarkers of signifi cance has provided the research community with 
a “magnet” to make the quest for fi nding the needle more effi cient.

On the other hand, apart from restructuring the biomarker development 
pipeline, it will now become critical to introduce regulatory science to the 
proteomics together with nanotechnology/nanobiomedicine and bioinformatic 
research (OMICS technologies in general) with clinical chemistry com-
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munity so that all these technologies can be translated from the laboratory 
to the clinic.

5.2.2 THE RELEVANT ROLE OF CLINICAL LABORATORIES

Clinical laboratories have an important role, and clinical scientists un-
doubtedly play an important part in the analytical validation of diagnostic 
tests and are thus required to routinely verify (confirm) previously cleared/
approved tests by the regulatory agency in their facilities. Post-market 
analytical validation is routinely performed by clinical researchers via 
evaluation tests (strategies, instruments, positive and negative controls, 
reagents, etc.), which complies with regulations, specifications, or condi-
tions. These tests typically involve precision, accuracy, linearity and lower 
limits of detection and quantification.

On setting up a method for an approved multiplex protein assay using 
a patient -specifi c “score“, clinical scientists should consider the way in 
which to perform studies to validate the score. One approach may involve 
running an adequate number of positive and negative patients to assess the 
performance of such a “score” in their diagnosis in comparison with their 
medical charts and fi nal clinical diagnosis. Additionally, international col-
laboration provides an effective means by which to educate key clinical 
laboratory audiences about the need for and use of common technologies 
and standards in proteomic and OMICS workfl ows and to share knowl-
edge and experience on commonly interesting targets, assays and new 
technologies.

On the other hand, the reduction universally observed in test develop-
ment and research activities represents, in part, a shift from laboratories 
making their own reagents and immunoassays to the purchase of the ma-
jority of them from an in vitro diagnostics company.

This is not an entirely negative development. External quality assess-
ment and profi ciency testing data clearly demonstrate the benefi ts of au-
tomation, including much improved precision, and there are benefi ts of 
scale in centralizing test development processes. Nevertheless, and as we 
previously mentioned, clinical laboratories should play an active role in 
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the fi nal evaluation of assays and in the study of their clinical utility in 
relation to their patients.

When considering requirements for the successful introduction of new 
diagnostic tests, it is helpful to review the general criteria that must be 
met (see Table 1), focusing on the roles of both research and specialist 
laboratories and the somewhat different requirements of high- throughput 
routine laboratories [61-64].

TABLE 1: Tips for the discovery of true candidate biomarkers at clinical laboratories

Necessity Suggestion

Clinically clearly understood Direct comparison with the existing best practice in the 
population for which it is intended

Well-characterized clinical 
specimens for discovery the 
relevant clinical population

Several factors have to be taken into account when collecting 
specimens for the studies of new biomarkers, whether for 
a specific clinical study or for a biobank in order to enable 
interpretation of results and ensure appropriate matching of 
patient and health controls

Well-validated discovery platform 
which is robust and reliable

The use of internal standards for identifying specific 
components and quality control via proteomic –mass 
spectrometry and OMICS strategies is critical.

Clinical evidence for the true 
candidate biomarker

Take into account: (a) which is the association of our 
candidate-biomarker with the relevant disease, (b) which is 
the assessment of clinical utility and impact, (c) which are 
the circumstances where use of the test would be unjustified 
and (d) Make a rigorous early investigation of the specific 
pre-analytical factors which might influence interpretation of 
the resulting data

This table illustrates the necessities for the successful transition when discovering true 
biomarkers from the research environment (lab) to the clinical applications and utilities.

5.2.3 INTEGRATION OF OMIC-SCIENTISTS EXPERTS WITH 
CLINICIANS

The ultimate goal for translational medicine is its capacity to perform as-
says in various clinical samples at multiple levels: DNA (genome), RNA 
(transcriptome) and protein (proteome) coupled to bioinformatics and 
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nanotechnology/nanobiomedicine and others, using the knowledge and 
technologies resulting from large-scale projects. This workfl ow provides 
a genetic basis and a good opportunity for the community to characterize 
and quantify proteins (refl ecting genetic alterations if detectable) and their 
alterations and PTMs in the cell.

It is critical to defi ne the fi nal purpose of a biomarker or biomarker 
pattern at the onset of the study and to select the case and control samples 
accordingly. This is followed by the experiment design, starting with the 
sampling strategy, sample collection, storage and separation protocols, 
choice and validation of the quantitative profi ling platform followed by 
data processing, statistical analysis and validation workfl ows. Biomarker 
candidates arising after statistical validation should be submitted for fur-
ther validation and, ideally, be connected to the disease mechanism after 
their identifi cation. Since most discovery studies work with a relatively 
small number of samples, it is necessary to assess the specifi city and sen-
sitivity of a given biomarker-based assay in a larger set of independent 
samples, preferably analyzed at another clinical centre. Targeted analyti-
cal methods of higher throughput than the original discovery method are 
needed at this point and LC-tandem mass spectrometry is gaining accep-
tance in this fi eld [65,66].

The resulting proteomic evidence will corroborate or complement the 
genetic aberrations detected in samples, such as tumours, providing deep-
er understanding of cancer and other diseases in the context of biological 
and clinical utility. The integration and interrogation of the proteomic and 
genomic data (and OMICS data in general) will provide potential bio-
marker candidates, which will be prioritized for downstream targeted pro-
teomic analysis. These biomarker targets will be used to create multiplex, 
quantitative assays for verifi cation and pre-screening to test the relevance 
of the targets in clinically relevant and unbiased samples. The outcomes 
from this approach will provide the community with verifi ed biomarkers 
which could be used for clinical qualifi cation studies; high quality and 
publicly accessible datasets; and analytically validated, multiplex, quanti-
tative protein/peptide assays and their associated high quality reagents for 
the research and clinical community.

It is also important to state that in order to develop clinical proteomic 
and OMICS applications using the identifi ed proteins (with and without 
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PTMs), collaboration between research scientists, clinicians, diagnostic 
companies and industry, and proteomic experts is essential, particularly 
in the early phases of the biomarker development projects. Also, comple-
menting the data with other OMICS tools is crucial. The proteomics mo-
dalities currently available have the potential to lead to the development 
of clinical applications, and the channelling of the wealth of the informa-
tion produced towards concrete and specifi c clinical purposes is urgent 
[65-67].

New biomarkers can be taken from research by experts in OMICS and 
clinicians into routine practice, provided there is sound evidence of clini-
cal utility, funding can be assured, mechanisms are in place to ensure that 
the test is done only for those likely to benefi t, analytical procedures are 
simple and robust, and quality is verifi ed through internal quality control 
and effi ciency testing procedures. For these requirements to be met in a 
timely manner for a specifi c biomarker, it is essential to learn from past 
mistakes and perhaps to think differently in the future.

For the future, greatly improved involvement and collaboration from 
all interested parties—including experts in discovery and assay develop-
ment, in health policy, in clinical trial units, in the diagnostics industry 
and in laboratories responsible for providing clinical testing—will almost 
certainly lead to earlier identifi cation and implementation of promising 
new biomarkers [68-71].

5.3 SUMMARY OF IMPORTANT CLUES WHEN APPLYING 
CLINICAL OMICS STRATEGIES FOR TRANSLATIONAL MEDICINE 
RESEARCH

1. Standardizing sample preparation procedures for each sample 
(e.g. blood, plasma/serum, etc.), is critical for obtaining reliable 
biomarkers and building a biomarker pattern, since slight changes 
in a given sample preparation could lead to very different protein 
profiles.

2. Clinical Proteomics and Bioinformatics for Translational Medicine 
research studies include steps for improvements that should be 
made and well-controlled in: (a) analytical tools and biobanking-
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samples, (b) discovery, (c) validation, (d) clinical application, and 
(e) post-clinical application appraisal. It is likely that most, if not 
all, of the components that are necessary for clinical success are 
either readily available, or could be allocated with more rigorous 
research standards and efforts supported by our scientific com-
munity, clinicians, health agencies including hospitals, diagnostic 
companies, and industry. Enthusiasm for the clinical impact of pro-
teomics may need to be tempered, at present, until robust evidence 
can be obtained, but some clinical successes will eventually be fea-
sible.

3. The rapid proliferation of Nanotechnology/nanobiomedicine and 
the implementation of sample-Biobanking are revolutionizing sci-
ence and technology. There is marked interest regarding the use of 
nanotechnologies in medicine coupled to clinical proteomics, and 
to complement OMICS tools in general. Therefore clear advances 
are appearing for the discovery of true candidate biomarkers.

4. However, and as a general rule, it must be taken into account as a 
very important conclusion, that without: (a) the correct study de-
sign, (b) the correct and complementary strategies (c) implementa-
tion of robust analytical methodologies and (d) the necessity for 
collaboration among expert OMICS scientists together with clini-
cians and the industry, the efforts, efficiency and expectations to 
make true candidate biomarkers a useful reality in the near future 
can easily be hindered.
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CHAPTER 6

6.1 INTRODUCTION

The modern molecular biologist is confronted with increasingly large da-
tasets. Genome sequencing data, proteomics data and microarray data are 
increasingly accessible, but difficult and laborious to interpret. Consider-
ing the investment cost of target validation, one needs to rank genome-
sized output data in favour of proteins that can readily be modelled using 
homology modelling, as these structural models can be used in virtual 
high throughput screening (vHTS) of large compound libraries [1]–[3]. 
Microbiologists designing antibiotics need to rank their candidate proteins 
for lack of similarity with any human protein, to reduce the possibility of 
potentially toxic off-target side effects due to cross-reactivity between in-
hibitors and patient host proteins. In addition, it is now possible to screen 
the proteome for homology to targets of known drugs, using the Drug-
Bank dataset [4], and propose FDA-approved drugs for rapid development 
to Phase IV clinical trials as these compounds are all defined as safe 



for human consumption. Much of the necessary search functionality is 
already available online [4]–[7]. However, the assimilation of this data 
into a cohesive table for analysis is non-trivial for molecular biologists un-
skilled in programming languages or database management. By providing 
a convenient online interface and summary table output, we hope to make 
this analysis open to a wide research audience.

6.2 MATERIALS AND METHODS

Genomes2Drugs was developed using open source Java Enterprise Edi-
tion in the NetBeans IDE 6.0 programming environment and deployed 
on Sun Application Server [8]. The Basic Local Alignment Search Tool 
(BLAST) program 2.2 was obtained from the USA National Center for 
Biotechnology Information (NCBI). The human genome protein sequenc-
es and PDB protein sequences were also obtained from NCBI. Drug target 
protein sequences were obtained from the University of Alberta DrugBank 
website [4]. Output data files are parsed using BioJava 1.6 and the data 
entered into an open source MySQL 5.1 database. The test genome Plas-
modium falciparum 3D7 protein sequences were obtained from the Euro-
pean Molecular Biology Laboratory - European Bioinformatics Institute 
(EMBL-EBI) Integr8 website (493.P_falciparum, [9]).

6.3 RESULTS

Genomes2Drugs is a freely available web-based search engine that si-
multaneously searches each input protein sequence against the protein se-
quences of the human genome, the DrugBank dataset drug targets and the 
PDB protein structure database [http://mmg.rcsi.ie:8080/g2d/]. The sche-
ma for information processing is shown in Figure 1. Users can input either 
a single FASTA formatted protein sequence [10] or multiple sequences, 
either in an input box or an uploaded text file. For instance, complete pro-
teome sequences can be downloaded from the EMBL-EBI Integr8 web-
site [9], and uploaded into Genomes2Drugs. Screen shots of the input and 
output screens are shown in supplementary Figure S1 online. Users need 
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FIGURE 1: Schema of data processing. Genomes2Drugs is a free online resource. The 
web interface was written using open-source Java Enterprise Edition, BioJava 1.6 and 
NetBeans IDE 6.0. Input sequences are aligned against the human proteome, the PDB 
dataset and the DrugBank target proteins dataset. Only the best results are preserved. The 
resulting output files are parsed using BioJava and entered into a MySQL 5.1 database, 
where the results are sorted and ranked. Output XML files are generated from this data.



to register and submit an email address, as processing occurs in the back-
ground. User information will remain private and will not be given to any 
third party. The user will be emailed when the job is complete, and can 
then login to download the result XML file which can be imported into 
Microsoft Excel as a ‘As an XML list’, provided the user has downloaded 
the ‘g2d.xsd’ file (available online) into the same directory. The results 
from a few input polypeptides can be opened in Excel, while larger ge-
nome wide searches should be opened in a database viewer like Microsoft 
Access, for which a viewing form is included (see supplementary Figure 
S1B). For easy of access to the data in Access we have included a tem-
plate MDB file and XSD schema file which need to be downloaded to the 
same directory as the XML file. The output terms are described in Table 
1. Each EBLASTp value is derived from the optimal alignment across the ge-
nome using default settings of NCBI's freely available BLASTp algorithm 
[5], [6]. As the best alignment score is recorded for each input protein, 
it follows that a poor score indicates that there is no matching protein in 
the comparator set. Thus a large EBLASTp[query vs human genome] value 
indicates that there is likely no match for that query protein in the human 
genome. Similarly, good sequence identity, with a small EBLASTp[query vs 
PDB] value indicates that the query sequence has a close homologue in the 
PDB structural database. No lower limit is set for any E value during the 
alignment calculation and only the best results are shown.

The <human expect> and <PDB expect> columns can be used individ-
ually to rank the whole input genome for proteins showing little homology 
to the human genome or good homology to a protein for which the crystal 
structure has been determined, respectively. More conveniently, the ratio 
of these expect values can be used to rank the output list according to 
proteins that would be readily structurally modelled, while also showing 
little identity to any human proteins. This ratio is provided in the logarith-
mic (base 10) form, in the column RhuPDB (2), which has been ranked by 
descending value.

The ratio values are calculated as follows:

(1)
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TABLE 1: Key for output file column headings.

Column Title Explanation

query_id Unique query entry number

query_accession First word of input protein title

query_title Input protein title after '>'

query_length Number of residues in input sequence

RhuDB Logarithm (base 10) of the ration of <human expect> and 
<pdb expect>

RhuDBRank Entries ranked by descending RhuPDB

RhuPDB Logarithm (base 10) of the ration of <human expect> and 
<PDB expect>

RhuPDBRank Entries ranked by descending RhuPDB

RDBPDB Logarithm (base 10) of the ration of <drugbank expect> and 
<pdb expect>

RDBPDBRank Entries ranked by descending RhuPDB

human_accession First word of human protein title

human_title Extracted from target sequence name in BLASTp output

human_expect Only optimal human/query alignment is returned, i.e. lowest 
BLASTp E value

human_rank Query vs. human genome alignments are ranked by descending 
<human_expect>. I.e. poor/no match to the human genome is 
scored well and given a low rank number

human_identities Number of identical residues in query and human sequences

human_percent_identites (<human identites>/<query length>)*100

human_positives Number of homologous residues in query and human sequences

human_percent_positives (<human positives>/<query length>)*100

pdb_accession Protein Data Bank accession number: pdb|xxxx|x

pdb_title Name of protein 3-D structure

pdb_expect Only optimal PDB/query alignment is returned, i.e. lowest 
BLASTp E value

pdb_rank Query vs. Protein Data Bank sequence alignments are ranked by 
ascending <pdb_expect>. I.e. excellent matches with very low E 
values are scored well and given a low rank number.

pdb_identities Number of identical residues in query and PDB sequences

pdb_percent_identities (<pdb_identities>/<query length>)*100

pdb_positives Number of homologous residues in query and PDB sequences

pdb_percent_positives (<pdb_positives>/<query length>)*100

drugbank_accession DrugBank accession number of target protein:
nnnn_all_target_protein.fasta



Column Title Explanation

drugbank_title Name of DrugBank target protein, including target drug 
accession numbers in parentheses: (DBnnnnn)

drugbank_expect Only optimal DrugBank/query alignment is returned, i.e. lowest 
BLASTp E value

drugbank_rang Query vs. DrugBank sequences alignments are ranked by 
ascending <pdb_expect>. I.e. excellent matches with very low E 
values are scored well and given a low rank number

drugbank_identities Number of identical residues in query and DrugBank sequences

drugbank_percent_identities (<drugbank_identities>/<query length>)*100

drugbank_positives Number of homologous residues in query and DrugBank 
sequences

drugbank_percent_positives (<drugbank_positives>/<query length>)*100

TABLE 1: Cont. 

(2)

(3)

Where EBLASTp[] is the expect value extracted from the BLASTp align-
ment output file using open-source BioJava [8]. The BLASTp algorithm 
approximates the best alignment (E value = 1e-180) to zero. To include 
these data in the ratios, we set E = 0.0 back to E = 1e-180. To include the 
important ‘NULL’ results from the human search in our ratio calculations, 
we arbitrarily set this to 1000. The full range for the RhuDB and RhuPDB values 
is thus −183 to +183. However, a ‘NULL’ result from the PDB and Drug-
Bank database searches needs to be flagged, as these query proteins are 
likely to be more difficult to homology model, and do not show homology 
to targets of known drugs. Error messages from these ratios are defined in 
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Table 2. The negative numbers used will rank these queries to the bottom 
a descending list.

Query sequences that show good homology to crystal structure tem-
plate sequences, but poor/no homology to any protein within the human 
genome, will have high RhuPDB values. The researcher may be particular-
ly interested in the “hypothetical” or “unknown” query proteins that are 
ranked well according to RhuPDB (in the top ~100) as these may make ex-
cellent targets for novel research into characterisation, validation, crystal-
lography/modelling and virtual high throughput screening.

TABLE 2: Definition of ratio ranges and error codes.

RhuDB RhuPDB RDBPDB

EBLASTp[hum] vs. EBLASTp[DB/PDB] –183 to 183 –183 to 183 –7000

EBLASTp[hum] vs. 'Null' DB/PDB –2000 –5000 –8000

'Null' DB/PDBvs. EBLASTp[hum] –3000 –6000 –9000

BLASTp expect value of the best query/human genome alignment (null = 1000)
BLASTp expect value of the best query/DrugBank alignment or query/protein data bank 
alignment (not null)
No alignment found between query and either DrugBank or PDB databases (null)

A sample output from a search using the full proteome of the malaria 
parasite, Plasmodium falciparum, is shown in supplementary Table S1 
online. The 5283 FASTA formatted protein sequences in the malarial ge-
nome were downloaded from the EMBL-EBI Interg8 website [9] and used 
as a test set. Of the top 50 entries as ranked by RhuPDB, the majority (68%) 
showed previous investigation and/or homology to crystal structures of 
Plasmodium falciparum proteins, indicating that this simple ranking sys-
tem highlights good candidate drug targets (see Figure 2). This is further 
illustrated over the full genome test set in Figure 2. A query entry was 
defi ned as a ‘hit’ if the PDB title contained keywords associated with ma-
laria. After ranking all 5283 test set entries according to RhuPDB, the per-
centage of hits found is plotted as a function of rank number. Thus in the 
insert in Figure 2 it is clear that ~80% of the hits are recovered within the 



FIGURE 2: Enrichment of P. falciparum proteome by RhuPDB – PDB targets. Enrichment 
curves plot the accumulation of user-defined ‘hits’ as a function of rank number. Thus in an 
ideal case (medium gray line), each consecutive entry in the ascending ranked list will be 
a hit. Alternatively, if ranking provides no selection the hits will be distributed randomly 
across the genome (light gray line). The enrichment percentage as a function of rank are 
shown in black. The 5283 proteins in the P. falciparum 3D7 strain test set were searched 
using Genomes2Drugs and ranked by RhuPDB. P. falciparum and malaria related hits from 
PDB were identified using keyword searching of the <pdb_title> field, and their position 
in the ranked list identified. The insert, which highlights the first 500 entries, shows that 
almost 80% of the entries with close homology to known P. falciparum crystal structures 
were identified in the first 10% of the genome.
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fi rst 500 entries, or 10% of the genome. The red line in Figure 2 shows 
an ideal case where each consecutive entry is a hit, while the light blue 
line shows a random distribution of hits. Interestingly, 25 of the top 50 
entries are uncharacterised “hypothetical“, “putative” or “unknown” pro-
teins, which warrant further investigation as novel drug targets by virtue 
of the fact that they are (i) pathogen specifi c and (ii) similar to a structural 
template for homology modelling.

Similarly, query sequences homologous to known drug targets, as 
defi ned by DrugBank [4], but showing poor/no homology to any human 
protein, will have high RhuDB values. In Figure 3, the full P. falciparum pro-
teome test set was ranked according to RhuDB and hits identifi ed as having 
malaria related keywords in the best PDB match title, again indicating that 
high ranking entries are likely to be well characterised targets for drug dis-
covery and development. Importantly, the same ranking showed good en-
richment of known antimalarial drugs, as defi ned by DrugBank (Figure 4, 
see listed in supplementary Table S2 online). The DrugBank hits for each 
query sequence are listed at the bottom of the Microsoft Access form sup-
plied in the output of Genomes2Drugs (see supplementary Figure S1B). 
These compounds include experimental small molecule drugs as well as 
FDA (Food and Drug Administration) approved medicinal drugs, which 
can be purchased and tested for in vitro effectivity [4]. After ranking the 
P. falciparum test set by RhuPDB, 8 of the top 50 proteins showed homology 
to targets of FDA approved drugs. If an FDA approved drug is found to be 
effective against the pathogen of interest, a ‘change-of-application’ patent 
could be sought. As all the necessary toxicology, pharmacology and dos-
ing analysis has already been completed, Phase IV clinical trials to con-
fi rm therapeutic use may be more rapidly instigated. This could become 
an extremely effi cient and rapid route for drug development. With a lower 
fi nancial barrier to entry, this strategy could be especially important in the 
development of therapeutic drugs against neglected infectious diseases af-
fecting the developing world.



Figure 3. Enrichment of P. falciparum proteome by RhuDB – PDB targets. Enrichment 
curves were plotted as described in Figure 2. The 5283 protein malarial proteome was 
ranked by RhuDB. P. falciparum and malaria related hits from PDB were identified using 
keyword searching of the <pdb_title> field. The enrichment percentage as a function of 
rank are shown in black, while the dark gray line shows an ideal case, and the light gray 
line indicates a random distribution. The insert highlights the first 500 entries.
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FIGURE 4: Enrichment of P. falciparum proteome by RhuDB – DrugBank targets. Enrichment 
curves were plotted as described in Figure 2. The 5283 protein malarial proteome was 
ranked by RhuDB. P. falciparum and malaria related hits from DrugBank were identified 
using keyword searching of DrugBank website [4], as shown in supplementary Table S2 
online. The <drugbank_title> field entries were matched to this list of P. falciparum or 
malaria related drug targets. The enrichment percentage as a function of rank are shown 
in black, while the dark gray line shows an ideal case, and the light gray line indicates a 
random distribution. The insert highlights the first 500 entries.



6.4 DISCUSSION

We have developed a free online resource that enriches any sized dataset 
of proteins of interest for those proteins likely to be most usefully in fur-
ther drug discovery efforts. The program addresses the need to focus drug 
discovery effort on those protein targets that (i) do not show homology to 
proteins in the human genomes and (ii) show close homology to proteins 
for which the 3-dimentional structure is known. As an added feature, each 
input protein sequence is compared to the DrugBank set of known drug 
targets, and may identify known drugs that are able to inhibit the protein 
under investigation.
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CHAPTER 7

7.1 REVIEW

7.1.1 INTRODUCTION

The strengthening of the robustness of discovery technologies, particu-
larly in genomics, proteomics and metabolomics, has been followed by 
intense discussions on establishing well-defined evaluation procedures 
for the identified biomarker to ultimately allow the clinical validation and 
then the clinical use of some of these biomarkers.



The ability of biomarkers to improve treatment and reduce healthcare 
costs is potentially greater than in any other area of current medical re-
search. For example, the American Society of Clinical Oncology estimates 
that routinely testing people with colon cancer for mutations in the K-RAS 
oncogene would save at least US $600 million a year [1]. On the other 
side, thousand of papers in the course of biomarker discovery projects 
have been written, but only few clinically useful biomarkers have been 
successful validated for routine clinical practice [2]. The following are 
the major pitfalls in the translation from biomarker discovery to clinical 
utility:

1. Lack of making different selections before initiating the discovery 
phase.

2. Lack in biomarker characterisation/validation strategies.
3. Robustness of analysis techniques used in clinical trials.

Each of these details is rarely documented and can dramatically affect 
the predictive outcome of biomarker results. However, the selection of use-
ful biomarkers must be carefully assessed and depends on different impor-
tant parameters, such as on sensitivity (it should correctly identify a high 
proportion of true positive rate), specifi city (it should correctly identify a 
high proportion of true negative rate), predictive value etc. Unfortunately, 
biomarkers with ideal specifi city and sensitivity are diffi cult to fi nd. One 
potential solution is to use the combinatorial power of different biomarkers, 
each of which alone may not offer satisfaction in specifi city or sensitivity. 
Besides traditional immunoassays such as ELISA, recent technological ad-
vances in protein chip and multiplex technology offer a great opportunity 
for the simultaneous analysis of a large number of different biomarkers in 
a single experiment, which has expanded at a rapid rate in the last decade. 
However, although many signifi cant results have been derived, one addi-
tional limitation has been the lack of characterisation and validation of such 
technologies. Besides technical characterisation, it also needs quality re-
quirements for correct characterisation of the predictive value of biomark-
ers. In order to overcome these limitations, some authorities (e.g. Food and 
Drug Administration (FDA), European Medicines Agency (EMA), Euro-
pean Association for Predictive, Preventive and Personalised Medicine 
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(EPMA), National Institute of Health (NIH)) already set up recommenda-
tions, short proposals and minimum information about a variety of bio-
analytical experiments that describe the minimal requirements to ensure 
that the technical performance as well as the predicted value of biomarkers 
are correct. For example, EPMA tries to outline a number of key issues in 
research, development and clinical trial studies, including those associated 
with biomarker characterisation, experimental design, analytical validation 
strategies, analytical completeness and data managements [3]. Actual paper 
follows recommendation presented in the EPMA White Paper [4]. Current 
recommendations should serve a set of criteria, which will help to carry 
on to a high-quality data project. Improvements in the quality outcomes 
are important because without requirements in the improved selection of 
biomarkers, correct performance of standardisation and validation, the in-
terpretation of the results as well as the direct comparisons of the predic-
tive value of biomarkers between different research labs or clinical trial 
studies is not possible. Besides the lack of quality in biomarker selection, 
a number of other key issues can be identifi ed, which should be addressed 
in the course of this article. Therefore, the aim of this article is to review 
and discuss a series of interpretative and practical issues that need to be un-
derstood and resolved before potential biomarkers go into the market and 
become feasible diagnostic tools. The content and structure of the neces-
sary information, as well as potential pitfalls and limitations of biomarker 
research and validation, are discussed briefl y in the next subsection.

7.1.2 SHORT OVERVIEW OF DIFFERENT KINDS OF 
BIOMARKERS

One of the goals of personalising medicine is to use the growing under-
standing of biology so that patients receive the right drug for their disease, 
at the right dose and the right time. Although the definitions of person-
alising vary, they all include the use of different biomarkers driven by a 
decision-making process in which a diagnostic test is pivotal. Biomarkers 
include gene expression products, metabolites, polysaccharides and other 
molecules such as circulating nucleic acids in plasma and serum, single-
nucleotide polymorphism and gene variants. Ideal biomarkers for use in 
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diagnostics and prognostics, and for drug development and targeting, are 
highly specific and sensitive [5]. Biomarkers can also be categorised as 
pharmacodynamic, prognostic or predictive [6]:

1. Pharmacodynamic biomarkers indicate the outcome of the interac-
tion between a drug and a target, including both therapeutic and 
adverse effects [7].

2. Prognostic biomarkers were originally defined as markers that in-
dicate the likely course of a disease in a person who is not treated 
[8]; they can also be defined as markers that suggest the likely 
outcome of a disease irrespective of treatment [9,10].

3. Predictive biomarkers suggest the population of patients who are 
likely to respond to a particular treatment [8,9].

Predictive biomarkers help to assess the most likely response to a par-
ticular treatment type, while prognostic markers show the progression of 
disease with or without treatment. In contrast, drug-related biomarkers 
indicate whether a drug will be effective in a specifi c patient and how 
the patient’s body will process it. Figure 1 gives an overview of different 
biomarker categories and types.

In Figure 1, the clinical biomarkers for diagnostics determine whether 
a patient is suitable for treatment with a particular drug (by stratifi cation 
markers), determine the most effective dose for the patient (by effi cacy 
markers), determine the underlying susceptibility of a patient for a par-
ticular side effect or group of side effects (by toxicity markers) or evaluate 
the course and effectiveness end point of a therapy (by surrogate endpoint 
markers).

Biomarkers can also be used as surrogate end points (end points that 
substitute for a clinical outcome such as how a patient feels or functions, 
or how many patients survive) [9,11,12]. Another way of classifying bio-
markers is by their role in drug development. Pharmacokinetic or pharma-
codynamic biomarkers are involved in early preclinical to phase I studies, 
and clinical (prognostic, predictive and surrogate) biomarkers play a role 
in phase II and III trials [10].

The Biomarkers and Surrogate End Point Working Group [13] has de-
fi ned a classifi cation system that can be used for biomarkers [14]:



1. Type 0 consists of disease natural history biomarkers that correlate 
with clinical indices;

2. Type I tracks the effects of intervention associated with drug mech-
anism of action;

3. Type II consists of surrogate end points that predict clinical benefit.

Measurement of different markers (RNA, DNA and/or proteins) needs 
different diagnostic assays; therefore, different qualifi cation and valida-
tion strategies are required.

Pharmaceutical companies are increasingly looking to develop a drug 
and diagnostic test simultaneously, in a process referred to as drug-diag-
nostic-co-development so-called companion diagnostic (CDx), to better 
defi ne the appropriate patient population for treatment. CDx are increas-
ingly important tools in drug development because they lead to the fol-
lowing:

1. Reduced costs through pre-selected (smaller) patient population;
2. Improved chances of approval;
3. Significantly increased market uptake;
4. Added value for core business (late phase);
5. Regulatory trend to have CDx mandatory.

The fi rst drug introduced using the personalised medicine paradigm—
Herceptin (Trastuzumab; Roche/Genentech, South San Francisco, CA, 
USA)—has now been on the market for more than a decade. However, 
the number of drugs marketed alongside CDx remains small (see Table 1).

Regulatory hurdles have been cited as other main reasons for the slow 
growth in this area. The differences between the regulatory process in the 
European Union (EU) and USA and the complexities of the regulatory 
processes in both regions cause other huge problems for companies. These 
diffi culties affect the preparation of dossiers and their timing and are am-
plifi ed when considering a CDx project, particularly where more than one 
company (e.g. pharmaceutical and diagnostic companies) is involved.

Advances in the science underlying drug development have made the 
discovery of novel biomarkers a real possibility, whilst still challeng-
ing, and the use of biomarkers to drive drug development programmes 
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has been increasing steadily over the past decade. Whilst the majority of 
these biomarkers will not be translated into CDx tests, the growth of bio-
marker use indicates that the future of the industry will lie in personalised 
medicine.

TABLE 1: Overview of already approved CDx on the markets

Biomarker Related drug Company Indication Test

Her-2/neu Herceptin Genentech/Roche Breast cancer PathVysion®FISH

Kit (CD117) Gleevec/Glivec Novartis Gastrointestinal c-Kit pharmDx

EGFR Erbitux/
Tarceva

Bristols-Myers/
Genentech

Colorectal/
NSCLC

EGFR pharmDx 
kit

CD20 Rituxan/
Bexxar

Genentech/Glaxo NHL Flow cytometry

CD25 Ontak/Onzar Eli Lilly Lymphoma Flow cytometry

CD33 Mylotarg Wyeth Leukaemia, CML Flow cytometry

Estrogen 
receptor

Nolvadex AstraZeneca Breast cancer Hormone receptor 
assay

HLA A2/HLA 
C3

Melacine GlaxoSmithKline Melanoma Serology, DNA-
based

Philadelphia 
chromosome

Roferon-A/
Gleevec/Glivec

Roche/Novartis Leukaemia, CML BCR-ABL chro-
mosome transloca-
tion test

T(15;17) 
translocation

Trisenox Cephalon Leukaemia, CML Fluorescence in 
situ hybridisation 
(FISH)

PML/RAR-α 
gene expression

Vesanoid Roche Leukaemia, CML

EGFR, epidermal growth factor receptor; CML, chronic myelogenous leukaemia; NSCLC 
non-small-cell lung carcinoma; NHL, non-Hodgkin lymphoma.

As refl ected in Figure 2, the search of the scientifi c literature indicates 
that many studies report the discovery of different potential biomarkers, 
but most of them do not meet the criteria of high sensitivity and specifi city. 
The lack of sensitivity and/or specifi city leads to a low number of patent 
application and, in addition to this, to a low number of successful market 
applications.
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If the biomarker used for patient selection is known from the earliest 
stages of the development process, the process of assay development can 
begin early, and there will be a selection of diagnostic assay used in clini-
cal trials from an early stage. Biomarkers related to response to therapy 
are often the result of clinical investigations in patients and may not be 
available until later in the development programme.

Diagnostic development is undertaken in three stages once a biomarker 
has been identifi ed. Analytical validation ensures the consistency of the 
test in being able to measure the specifi c biomarker. Clinical validity re-
lates to the consistency and accuracy of the test in predicting the clinical 
target or outcome claimed, and clinical utility relates to the fact that the 
test should improve the benefi t/risk of an associated drug in the selected 
and non-selected groups. Table 2 describes strategic consideration and im-
plication positions of key stakeholders—regulators, pharma and diagnos-
tics companies, patients, physicians and healthcare providers.

TABLE 2: Strategic considerations and implications of personalised medicine

Pharmaceutical companies • Generate new revenue stream

• Increased targeted therapies

• Improve current clinical trials design (kick-off  candidates at 
phase III)

• Differentiate CM product offerings

• Shorten clinical trials

• Improve go-no-go decisions in clinical trials and  make it earlier

Diagnostic companies • New pivotal in the personalised medicine

• Need to establish relationships with  pharmaceutical companies

Payers/health ensurers • Payers ensure payment of personalised medicine

• Agree on reimbursement

• Improve the availability of personalised medicine  and their re-
spective diagnostic

• Have control over escalating healthcare costs

Regulatory authorities • Clinical trials with improved statistical relevance

• Will aid co-development programmes

• Enhance the utility of test information on product  labelling



Case studies of drugs and their companion diagnostics that have been 
approved over the last 10 years indicate that the number of co-developed 
products is small. The majority of diagnostic tests available to drive pa-
tient selection for particular drugs have been added years after the drug’s 
approval. However, experience from the EU and USA also indicates that 
regulators will not approve targeted drugs in the absence of available, rel-
evant diagnostic tests.

7.1.3 KEY POINTS TO BE ADDRESSED

According to Issaq et al. [5], the failure in finding high-sensitive and high-
specific biomarkers may be attributed to the following factors:

1. Small number of samples that are analysed;
2. Lack of information on the history of the samples;
3. Case and control specimens which are not matched with age and 

sex;
4. Limited metabolomic and proteomic coverage; and
5. The need to follow clear standard operating procedures for sample 

selection, collection, storage, handling, analysis and data interpre-
tation.

Furthermore, most studies to date used samples with a complex matrix 
such as serum, plasma, urine or tissue from patients and controls. Another 
reason for pitfalls in biomarker validation is the usually slow progression 
of some diseases, requiring high numbers of well-stratifi ed patients who 
are undergoing long-term treatment when conventional diagnosis and im-
aging techniques are used. Importantly, there is a lack of sensitive and 
specifi c prognostic biomarkers for disease progression or regression that 
would permit a rapid clinical screening for potential responders and non-
responders. Nonetheless, in view of an urgent need for novel therapeutics 
that have a positive impact on morbidity and mortality of chronic diseases, 
the fi eld is now moving more quickly towards clinical translation. This de-
velopment is driven by smart preclinical validation, a better study design 
and improved surrogate readouts using currently available methodologies 
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and diagnostic techniques. Moreover, upcoming novel biomarkers and di-
agnostic technologies will soon permit a more accurate and effi cient as-
sessment of disease progression and regression.

7.1.4 CONSIDERATIONS BEFORE INITIATING THE 
BIOMARKER DISCOVERY PHASE

Although some biomarkers have been approved by the FDA as qualitative 
tests for monitoring specific diseases (e.g. nuclear matrix protein-22 for 
bladder cancer), unfortunately, the majority of found biomarkers (proteins 
or metabolites) are not sensitive and/or specific enough to be used for 
population screening. One of the major reasons that proteomic and me-
tabolomic studies over the past decade have failed to discover molecules 
to replace existing clinical tests is due to errors in either study design and/
or experimental execution. Werner Zolg wrote in a review [15] that, before 
initiating the discovery phase, the first step in the process chain of creating 
new diagnostic content is to make critical decisions on the sample selec-
tion that will directly impact the outcome of the identification process. The 
very selection of the discovery samples and their degree of characterisa-
tion of the material, down to the standard operation procedures on how the 
samples were acquired and stored, can be decisive for success or failure. 
By selecting tissue as the discovery material for biomarker identification, 
one must inevitably choose between cultured cells or specimen directly 
obtained from patients. There are advantages/limitations to either option.

7.1.5 CONSIDERATION ON THE SELECTION AND 
RANDOMISATION OF PATIENTS FOR BIOMARKER STUDIES: 
LOOKING FOR THE ‘IDEAL’ PATIENTS

The optimal selection and randomisation of patients is essential and has to 
be included in each clinical trial, testing the efficacy of drugs and biomark-
ers. In particular, given the variant course of disease progression even in 
well-selected patients with a dominant single aetiology, subjects should be 
well matched according to factors such as the following lifestyle risk factors: 



(1) alcohol and tobacco consumption, (2) body mass index, (3) physical 
activity, (4) signs of the metabolic syndrome or (5) use of (over-the-coun-
ter) medications. As in other studies, age and sex should be balanced. In 
addition, stratification of patients as to their genetic risk of developing a 
specific disease, (e.g. using a score) will be central to obtaining a balanced 
randomisation of the placebo vs. the treatment group. These facts alone 
should significantly reduce the number of patients and the duration of the 
trial needed to demonstrate a significant reduction of disease progression 
or induction of regression. Histological end points in proof-of-concept tri-
als will still be required by regulatory authorities, apart from long-term 
hard end points, such as morbidity and mortality in phase III trials. At 
present, it is not possible to exactly predict the number of patients and the 
time on treatment that are needed to demonstrate the clinical benefit of a 
drug agent or biomarker. This is one major reason that companies have 
been reluctant to enter this difficult field.

7.1.6 THE CURRENT STATE OF BIOMARKER DISCOVERY

The search of the scientific literature clearly indicates that most published 
biomarkers are inadequate to replace an existing clinical test or that they 
are only useful for detecting advanced disease stage, where the survival 
rate is low. Many molecular or genetic biomarkers have been suggested for 
the detection of different diseases; however, most of them do not possess 
the required sensitivity and specificity. Another reason why most proposed 
metabolomic and proteomic biomarker results that have not progressed 
from the laboratory to the clinic study is that the majority stopped at the 
first phase of biomarker discovery. According to other studies [5,16,17], 
there are five phases that a protein or a metabolite has to go through to 
become a biomarker. Phase I is preclinical exploratory studies to identify 
potentially useful markers, phase II is clinical assay development for clini-
cal disease, phase III is retrospective longitudinal repository studies, phase 
IV is prospective screening studies and phase V is control studies [5].

Listed examples of already approved biomarkers in Table 1 show that 
there are no 100% sensitive and specifi c biomarkers for different types of 
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diseases to date. A biomarker with a high sensitivity has a low specifi city 
and vice versa. Unfortunately, biomarkers with ideal specifi city and sensi-
tivity are diffi cult to fi nd. One potential solution is to use the combinato-
rial power of a number of different biomarkers, each of which alone may 
not offer satisfactory in specifi city. For example, Horstmann et al. [18] 
studied the effect of using a combination of bladder cancer biomarkers on 
sensitivity and specifi city. Although none of the combinations resulted in 
100% sensitivity and specifi city, the sensitivity improved from 91% (using 
two biomarkers) to 98% using a combination of four different biomarkers.

7.1.7 PITFALLS AND LIMITATIONS

However there exist different reasons why most potential biomarkers 
failed in achieving adequate sensitivity and specificity and are not accept-
ed as clinical tests. One main reason is that most biomarkers are dealing 
with detecting diseases at an early stage in humans that have different age, 
sex and ethnicity. Other important fact is to find a protein or a metabolite 
at an extremely low concentration level among thousands of other proteins 
and metabolites. To improve sensitivity and specificity, there are different 
strategies: potential solutions are listed as follows:

1. Improve the assay (e.g. antibody with a higher specificity and/or in 
combination with a detection conjugate with a higher sensitivity),

2. Combine several markers,
3. Check for subpopulations and stratify population (e.g. matched by 

gender, age, pathology).

The current procedure for the search of biomarkers is dealing with po-
tential errors in the study design that can be avoided in future studies.

Figure 3 gives an overview about two main reasons why most potential 
biomarkers failed in achieving adequate sensitivity and specifi city and are 
not accepted as clinical tests. One main reason is pitfalls and limitations 
in biomarker discovery and second main reason is pitfalls in biomarker 
validation.



7.1.8 AGE, SEX AND RACE

Biomarker studies are normally carried out using body fluids or tissues 
collected from patients and healthy subjects of different ages, sex and race. 
Using samples from patients and controls that are of different ages and 
sexes can dramatically influence the results. In a recent study, Lawton et 
al. used 269 subjects, 131 males and 138 females, to study the effects of 
age, sex and race on plasma metabolites. The patients were of Caucasian, 
African-American and Hispanic descent and ranged in age from 20 to 65 
years. The subjects were divided into three different age groups; 20–35, 
36–50 and 51–65. Using GC/mass spectrometry (MS) and high-perfor-
mance liquid chromatography (HPLC)/MS, they reported that ‘more than 
300 metabolites were detected of which more than 100 metabolites were 
associated, with age, many fewer with sex and fewer still with race’ [19].

7.1.9 SELECTION OF PATIENTS AND CONTROLS

Patients for biomarker studies should be carefully selected by a special-
ist (e.g. oncologist for cancer studies or a pathologist for tissue samples) 
to insure the presence or absence of diseases. Unfortunately, predictive 
curve values of biomarkers with no or less overlapping of diseased vs. 
non-diseased cohorts are difficult to find. There exist always more or less 
overlapping areas between healthy and diseased cohort. The overlapping 
area allows the analyst to calculate the proportion of patients whose diag-
nosis was correctly predicted by the model (true positives for sick patients 
and true negatives for healthy patients) or false negative or false positive 
values [3].

Generally, the number of patients and control subjects in published 
studies is very small to give an acceptable statistical value. Also, many of 
the potential proposed markers have not been confi rmed or validated in a 
high-quality manner. Body fl uids and tissues are collected from a group of 
patients of different disease stages, and results are compared with a group 
of healthy persons. The effect of a disease stage on sensitivity of a single 
biomarker should be taken into consideration as mentioned previously 
because sensitivity improves with increase in disease stage. Grossman 
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E 3: Pitfalls and failures in biom

arker identification.



[20] adequately summarises the importance of consistency through his 
observation that ‘the contradicting published reports likely [resulted] from 
studies testing different patient populations, using different methodolo-
gies, and applying different [cut-offs] for a positive test’.

7.1.10 ERRORS IN STUDY EXECUTION

Study execution deals with experimental parameters that need to be con-
sidered. These parameters include many different variables, such as sample 
collection, handling and storage, sample comparison, number of samples, 
sample preparation, methods of analysis and number of replicates.

7.1.11 SAMPLE COLLECTION, HANDLING AND STORAGE

Samples are collected from a person who passed a physical exam by a 
physician who determines that the person of interest has a concrete disease 
or is healthy. Samples (serum, plasma, urine, saliva, tissue etc.) should be 
collected in freezer-type tubes, immediately snap frozen and stored in a 
freezer until time of analysis. It is recommended that, for short-time stor-
age (less than 1–2 weeks), storage condition should be at −20°C, and for 
long-term storage (more than 2 weeks), storage condition should be at 
−70°C. At the time of analysis, samples should be thawed at 4°C or on ice 
and prepared according to the selected method of analysis. The history of 
the sample is very important and may have been obtained from sample 
storage banks with proper collection, storage information about the stage 
of disease, medication, pathology, age, gender and condition of patients. 
A lack of consistency in sample collection and storage can doom a study 
before any data are even collected.

7.1.12 DIRECT SAMPLE COMPARISON

If this option is chosen, the degree of sample characterisation is critical. 
It is of importance that the specimens used in the diseased cohort are not 
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simply classified as ‘diseased’ (if possible, together with the stage of 
the disease) but that a detailed histopathological assessment of the dis-
tribution of cell types (e.g. tumour cells, necrotic cells, stroma) in the 
diseased specimens is carried out [5]. This distribution should be as 
uniform as possible in all samples, and it should represent the correct 
disease/healthy state. Otherwise, normalising the analytical outcome be-
comes very difficult.

7.1.13 NUMBER OF SAMPLES

The number of samples that have to be placed in the diseased and healthy 
control groups in order to be compared with a variety of analytical ap-
proaches remains a matter of discussion. A minimum of 15 samples in 
the discovery phase is necessary to get a reasonable representative selec-
tion basis for marker candidates. If the number is for practical reasons 
(resources, cohort and time lines), which is very small (e.g. less than 
10 per group), then the observed differences between the two sets of 
specimens are in danger of being over-interpreted when extrapolated to 
generalised cohorts. Low sample sizes make the correct identification of 
those differences increasingly difficult. To overcome these limitations, 
Zolg [15] recommended running second and third discovery rounds to 
complement the results of the first round. Ideally, the sample number 
analysed should not only allow stating the presence or absence of a given 
protein, but should also give the opportunity to identify trends. Another 
opportunity is to pool the samples, i.e. to physically combine several of 
the extracts to create fewer samples, to be put through the entire ana-
lytical process. Pooling of samples inevitably leads to a loss of informa-
tion. The distribution of proteins is averaged by the very pooling process 
with the prospect that individual proteins are pushed below the detection 
limit by one member of the pooling cohort not expressing the protein in 
question. At any rate, somewhere in the selection process, the individual 
spectrum of proteins has to be established. Therefore, the pooling pro-
cess just shifts the workload to a later point in the process chain, and 
very good arguments have to be found to deliberately increase the com-
plexity of the data sets by pooling.



7.1.14 SAMPLE PREPARATION

Preparations of the sample for proteomic and metabolomic analyses prior 
to analysis are very important and can introduce errors that always will af-
fect the final results [3,5]. The search for biomarkers in biological samples 
involves different steps depending on the sample type and if it is analysed 
for metabolites or proteins. Extraction of metabolites from the blood, urine 
or tissue required multiple purification and extraction procedures using 
different solvent systems as discussed by Want et al. [21] and Issaq et al. 
[5]. It is not always possible to extract or to isolate all the metabolites from 
a sample with a single solvent since metabolites have different chemi-
cal and physical properties and are present in a wide dynamic range of 
concentrations. The search for a protein biomarker involves extraction of 
the proteins followed by fractionation, purification, specific enrichment 
and then analysis by different analytical methods (e.g. 2DE-PAGE, im-
munoassays, Western blot, HPLC/MS/MS). Analysis of the blood as well 
as the serum is more complicated than that of urine or saliva as it contains 
fewer proteins, and high-abundant protein must be depleted prior to analy-
sis. Approximately 99% of the protein content of the blood (both serum 
and plasma) is made up of only about 20 proteins (http://www.plasmapro-
teome.org) [22]. While depletion of these proteins will allow the detection 
of low-abundant proteins, it may remove proteins that are bound to these 
20 proteins, resulting in a loss of potentially important information [23]. 
Tissues are homogenised first followed by metabolites, and proteins are 
extracted and analysed. Incomplete homogenisation can lead to losses that 
can affect the accuracy of the results. In addition, one cannot ignore hu-
man errors in sample collection, storage, weighing, extraction etc.

7.1.15 METHODS OF ANALYSIS

Choosing the optimal analysis method is critical in biomarker search by 
proteomics and metabolomics. For example, analysing the plasma pro-
teome involved protein precipitation and solubilisation; therefore, the 
downstream fractionation method must be either electrophoresis or a liquid-
phase method. Unfortunately, studies have shown that the proteome analysis 
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by groups using different methods resulted not only in different numbers 
of protein identifications, but also in poor overlap between the results 
[5,23,24]. These results prove that the selected method of analysis is an 
important parameter.

7.1.16 NUMBER OF REPLICATES

Sample should be analysed in triplicate and report the mean and standard 
deviation. Unfortunately, most published proteomic and metabolomic 
studies only analyse each sample once, which does not permit the devia-
tion from the mean (i.e. the error in the measurement) to be calculated. 
Proteomic analysis of a biological sample involves different analytical 
steps in the course of sample preparation. Each one of these steps can in-
troduce an error. Due to difficulties either in sample preparation, in protein 
preparation or in assay or protein chip hybridisation, the amount of repli-
cas varied from zero to six. Thus, implicating different optimal statistical 
tests were necessary for the various settings.

7.1.17 CONSIDERATION ON THE IMPROVEMENT OF 
CURRENT EFFICACY READOUTS BY DEVELOPMENT OF 
NON-INVASIVE DIAGNOSTIC TOOLS

Further improvement is desirable to reduce the number of study patients, 
trial duration, costs and, most importantly, possible risks for individuals. 
Thus, new innovative diagnostic techniques are needed that allow an exact 
assessment of the degree of disease and, more importantly, of the dynamic 
processes underlying the diseases. Such biomarkers and technologies will 
have to be specific for the targeted structure, i.e. the cells or key molecules 
involved in the development of the disease. Ideally, sensitive and specific 
markers/imaging methodologies will allow a rapid and mechanism-based 
screening for and efficacy monitoring of treatments. Additionally, there is 
a need for universal-standardised reporting methods to aid interpretation 
and comparison of potential clinical biomarker trails. All current non-in-
vasive methodologies (serum markers, serum marker algorithms, contrast 



imaging etc.) yield a sufficient to excellent diagnostic accuracy for the 
detection (or exclusion) of an upcoming or current disease.

7.1.18 REGULATORY OUTLOOK AND FUTURE ASPECTS

The regulatory landscape for biomarker discovery and validation projects 
(especially for drug-diagnostic co-development = companion diagnostic) 
is evolving and getting more important to the upcoming clinical trial stud-
ies. In the past few years, available data have been reviewed by FDA and 
EMA, and experience from some exploratory data submission process was 
used to create a formal biomarker qualification purpose [25].

Both the FDA and EMA have similar biomarker qualifi cation process-
es in place that enable research institutes and pharmaceutical companies to 
obtain advice or qualifi cation of the biomarker in question. In both cases, 
similar guidance concepts were developed that are very clear on the fact 
that biomarker qualifi cation does not constitute a review of a diagnostic 
for commercialisation. Nevertheless, for the future, biomarker qualifi ca-
tion submissions are strongly recommended by US and EU authorities 
and will be more and more required for drug/diagnostic co-development 
projects in both regions [25]. Further guidance on clinical trial enrichment 
and internal standard operating procedures for cross-labelling efforts are 
also expected and will improve the penetration of personalised medicine 
in clinical practice.

The FDA’s fi rst guideline was fi nalised in 2005, and it is based on the 
fact that many clinical trial studies were utilising biomarkers but that these 
data were often exploratory and that their regulatory submission was not 
required [25]. However, the US regulatory agency regarded the submis-
sion of these data as benefi cial for both the industry and the FDA to ensure 
that regulatory scientists are familiar with and are prepared to evaluate 
future submissions. This data mainly includes pharmacogenomic infor-
mation, and the programme is referred to as a voluntary exploratory data 
submission (VXDS). The success of this VXDS programme has led to the 
development of a number of new (draft) guidance documents including 
those related to the biomarker qualifi cation process and to clinical phar-
macogenomics in the early phases of drug development. Further guidance 
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on clinical trial enrichment and internal standard operating procedures for 
cross-labelling efforts within FDA offi ces is also expected and is continu-
ously under discussion.

Since the FDA’s initial publication, the International Committee on 
Harmonisation (ICH) has published a guidance relating to pharmacoge-
nomic data (ICH E15) that defi nes pharmacogenomics, pharmacogenetics, 
genomic biomarkers, and relevant sample and data coding. Standardised 
terminology is presented for incorporation in future regulatory documents 
related to pharmacogenetics and pharmacogenomics. Further ICH guid-
ance, topic E16, on the information required for biomarker qualifi cation 
was published in 2010. In addition, the FDA has established processes for 
working jointly with EMA on the review of exploratory information. A 
review of their experience and the impact of the guidance were published 
in 2010 [16].

7.2 CONCLUSIONS

While application of potential biomarkers in preclinical development is 
far advanced, only a handful have passed clinical trials (see Table 1) and 
are already commercially successful on the market (see Table 3). Rea-
sons for the pitfalls are manifold, including difficult validation strategies 
and the usually slow disease progression, requiring high numbers of well-
stratified patients undergoing long-term treatment when conventional di-
agnostic parameters or related end points are used. Importantly, there is a 
notorious lack of sensitive and specific surrogate biomarkers for disease 
progression or regression that would permit a rapid clinical screening for 
potential drug candidates. Nonetheless, in view of an urgent need for new 
drugs that positively impact morbidity and mortality of different diseases, 
the biomarker field is now moving more quickly towards clinical transla-
tion. This development is driven by thoughtful preclinical validation, a 
better study design and improved surrogate readouts using currently avail-
able methodologies. Moreover, upcoming novel biomarkers and imaging 
technologies will soon permit a more exact and efficient assessment of 
disease diagnosis, disease progression and disease regression as already 
published in other works [26,27].



TABLE 3: Molecular diagnostic players with approved tests

Manufacturer Headquarter Number of tests Global sales IVD

Roche Molecular Diagnostics Switzerland 24 20%

Gen-Probe CA, USA 18

Cepheid CA, USA 13

Becton, Dickinson and Company NJ, USA 11

AdvanDx MA, USA 10

Abbott Molecular IL, USA 8 15%

Hologic MA, US 7

Nanosphere IL, USA 7

Qiagen Germany 7

Idaho Technology UT, USA 5

AutoGenomics CA, USA 4

bioMerieux France 4

Luminex Molecular Diagnostics TX, USA 4

Siemens Healthcare Diagnostics IL, USA 3 15%a

Others 28

Total 153

aMainly imaging technology. After Datamonitor; adapted from the Association of 
Molecular Pathology.
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CHAPTER 8

8.1 WHEN WILL GENOME SEQUENCES, EXPRESSION PROFILES, 
AND COMPUTER VISION FOR BIOIMAGE INTERPRETATION BE 
ROUTINELY USED IN CLINICAL MEDICINE?

There is apparently no doubt for anyone that modern life science research 
based on the new high-throughput technologies most prominently repre-
sented by genomic sequencing together with the increasingly powerful 
and, at the same time, affordable information technology products will 



dramatically change healthcare. The main idea behind these expectations 
is that the new availability of data characterizing the patients’ individuality 
at the level of genome, biomolecules and gene/protein networks together 
with evermore powerful diagnostic, mainly imaging tools at the histologi-
cal, anatomical and physiological levels allow ever finer stratification of 
the patients’ conditions once the molecular data is integrated with clini-
cal data and, finally, it will lead to the design of personalized treatment 
regimes.

Unfortunately, the discussion in the media has become hyped with ex-
pectations increasingly getting out of touch with the progress that both 
biomedical science [1] and healthcare at the ground can deliver in the short 
and medium term. In this discussion and, to some extent, review article, 
we try to analyze what are major trends in computational biology and bio-
informatics that support the advance towards stratifi ed and personalized 
medicine and what are the fundamental and some of the procedural bar-
riers on the path towards the solution of major healthcare problems such 
as infections, cancer, metabolic and neurodegenerative diseases, familial 
disorders, etc.

The article is structured as follows: In the section The hype around 
genomics and proteomics technologies in the healthcare context and fun-
damental reasons calling for a temperate view, we look into the general 
developments that fuel the expectations of revolutionary change in health 
care and public health; we talk about several roadblocks that have been 
removed on the path towards personalized/stratifi ed medicine and the pos-
sible role of bioinformatics and computational biology in this process. We 
also emphasize what are the reasons why many of the expectations will 
not materialize in the short- to medium-term time frame. Section Manage-
ment of innovation cycles of high-throughput technologies and the role of 
bioinformatics in this process is dedicated to issues that arise when bio-
informaticians/computational biologist actually penetrate into the actual 
health care provision system under the condition when the application of 
new computational analysis methods and evaluation protocols is not really 
routine.

In sections Bioinformatics moving towards clinical oncology: biomark-
ers for cancer classifi cation, early diagnostics, prognosis and personalized 
therapy (cancer biomarkers), Sequence-structure-function relationships 
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for pathogenic viruses and bacteria and their role in combating infections 
(infectious diseases) and Impact of Bioimage Informatics on Healthcare 
(computerized histopathology), we exemplarily discuss and partially re-
view the progress in application areas that have already or will likely ben-
efi t in the near future from interaction with bioinformatics/computational 
biology approaches. Although often histologically similar, increasingly 
more cancer subtypes are getting characterized at the level of the specifi c, 
individual biomolecular mechanisms that drive the growth of the tumor 
cell population and, thus, are essentially understood as different diseases. 
Cancer biomarkers are critical for diagnosis, classifi cation, prognosis and 
therapy progress evaluation in this concept (section Bioinformatics mov-
ing towards clinical oncology: biomarkers for cancer classifi cation, early 
diagnostics, prognosis and personalized therapy).

Due to their small genome and the possibility to successfully deduce 
phenotype properties from mutations, viral and bacterial pathogens are 
thankful objects for computational biology analysis in the clinical context 
(in contrast to the situation with higher eukaryotes such as human; sec-
tion Sequence-structure-function relationships for pathogenic viruses and 
bacteria and their role in combating infections). As example, we review in 
depth the clinically relevant characterization of patient-specifi c infl uenza 
viral infections. We also show that genome analysis of enterohemorrhagic 
E.coli allows selecting existing FDA approved drugs for treatment.

In section Impact of Bioimage Informatics on Healthcare, we review 
advances in the automated assessment of histopathological and, to a minor 
extent, other medical images. Possibly, these developments in this area 
might have a non-spectacular but a very profound impact on health care 
delivery very soon since the problems to overcome are more of the engi-
neering type and not of fundamentally scientifi c origin.

8.1.1 THE HYPE AROUND GENOMICS AND PROTEOMICS 
TECHNOLOGIES IN THE HEALTHCARE CONTEXT AND 
FUNDAMENTAL REASONS CALLING FOR A TEMPERATE VIEW

Several roadblocks towards the goal of stratified/personalized medicine 
have disappeared very recently. The spectacular improvement of nucleic 



acid sequencing technologies lead to a reduction in costs, both in time 
and money, at a scale that can only be described as jaw-dropping for the 
observer. Whereas the first full human genome sequencing absorbed about 
3 billion USD in the USA alone and it took about a decade to be accom-
plished [2], recently offered machines such as Ion Proton™ Sequencer 
(Life Technology) or HiSeq™ 2500 (Illumina) [3] move these numbers 
rather close towards 1000 USD and a single day. And this appears not to 
be the endpoint of the technology development with more progress to be 
expected in the medium-term future. Naturally, dreams about all kinds of 
sequencing applications, especially, in clinical contexts and with affluent 
patients start sprouting. To note, the progress of nucleic acid sequencing 
is just the most eye-catching; essentially, it hides dramatic progress also 
in many other areas and high-throughput technologies such as expression 
profiling, histopathological image processing, etc. We need to acknowl-
edge, that for life sciences, where, historically, getting at least some veri-
fiable, quantified data for their biological system of study was a major 
difficulty and the setup of experiments and not the analysis of the mea-
surement absorbed most of the intellectual capacity [4], the current deluge 
of quantified data is really a game changer and puts theoretical analysis 
detached from experimentation into general importance for the field for 
the first time.

The second major change is in IT itself. The older among the list of au-
thors still remember their times as PhD students when the access to main-
frame machines was cumbersome and heavily restricted and a good desk-
top computer with graphical interface in the late eighties/early nineties 
had the price of a luxury sports car. Today, for nominally the same money, 
one can equip several research teams if not a small institute with computer 
clusters (e.g., a 64 core computer trades for just about 10000 USD), stor-
age systems and network tools that are more powerful than necessary for 
about 90% of the tasks in computational biology. Thus, computing and 
storage opportunities are essentially no longer the limiting factor for life 
science research compared with just a decade or even a few years ago.

The hype currently accumulating around the new opportunities with se-
quencing and other high-throughput technologies, maybe, is sensed most 
directly in the entrepreneurs’ and scientists’ comments compiled by Bio-
IT World at its WWW page dedicated to the 10th anniversary of its own 
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launch [5]. Although there are some minority cautionary notes, one cannot 
get away with the general impression that concluding from molecular data 
to clinically important statements is mainly seen as a problem of the scale 
of data generation. It is expected that the IT-centric efforts of integrating 
patient-specifi c sequencing, expression, tissue imaging data with clinical 
information (whatever might be the exact meaning of this “data integra-
tion“; just putting everything into one electronic database) will inevitably 
lead to signifi cant healthcare outcomes in terms of personalized medicine.

This surprisingly optimistic view remembers the euphoria that, ten 
years ago, accompanied the presentation of the fi rst draft of the human 
genome caused by the anticipation that “Genetic prediction of individual 
risks of disease and responsiveness to drugs will reach the medical main-
stream in the next decade or so. The development of designer drugs, based 
on a genomic approach to targeting molecular pathways that are disrupted 
in disease, will follow soon after” [6]. With hindsight, we know that the 
progress in the last decade has not reached the promises, not even nearly 
[1,7]. The hype in the media is also in suspicious contrast to the recent 
attempt of certain pharmaceutical companies to slash down their own re-
search force and to promote the idea of open innovation, i.e., essentially 
unloading research efforts, costs and research risks into the public sphere.

Whereas the general developmental trend appears correctly predicted, 
the devil is in the detail and the serious disagreement is about timescales 
and in which areas/applications the healthcare breakthroughs from genom-
ics and other technologies are more likely in the time closer to us. Moving 
from the scientifi c laboratory to actual healthcare is also associated with 
a myriad of additional issues besides the scientifi c task itself. Apparently 
boring questions such as predictive power, robustness, standardization, 
availability and reliability of the new methods in conditions of routine 
application in regular hospitals, clinics and in the out-patient context by 
possibly scientifi cally insuffi ciently trained personnel become urgent. This 
includes the comparison of the new methods with more traditional, tested 
approaches not only from the viewpoint of medical science but also cost-
wise (in terms of money and working time for tests and data analyses). 
Since considerable economic interest is associated with the upcoming 
healthcare revolution not only from IT equipment and healthcare solution 
providers but also from charlatans who, for example, try to sell life style 



advice derived from the customers’ own genome sequence already today, 
it is important to get the discussion away from the level of fairy tale and 
hyped promises and to assess the current state of the art realistically.

Besides the costs, the most important argument against having genome 
sequencing and expression profi ling from every patient at present is the 
fact that the overwhelming part of this data cannot be interpreted into 
biologically and/or medically signifi cant conclusions. Today, ever faster 
sequencing leads foremost to ever faster growing amounts of non-under-
stood sequence data. To note, we need to know about the biomolecular 
mechanisms that translate the genome sequence into phenotypes when 
we wish to interfere rationally at the molecular level. As elaborated else-
where, the biological functions of about every second human gene are not 
well or even completely not known [1]. The whole mystery of non-cod-
ing RNA function is hardly scratched upon; yet, we know that many, also 
non-protein-coding regions of the genome are actively transcribed and 
this expression infl uences important biological processes [8,9]. Maybe, 
it was one of the most important insights from the whole human genome 
sequencing project that we can estimate now how much human biology at 
the molecular level we do not know, namely most likely (much) more than 
50% [1]. To just search for correlations between phenotypic, including 
clinical conditions and genomic changes will appear insuffi cient because 
of several reasons: 1) the path relating genome features and phenotype 
is extremely complex in many cases. 2) The statistical signifi cance crite-
ria will require impossibly large cohorts. 3) Rationally designed therapy 
without mechanistic insight is problematic. Given the pace of progress in 
the area of biomolecular mechanism discovery during the last decade, it 
is expected that it will take another century until we will understand our 
own genome. Presumably, scientifi c, technological and social factors will 
kick in that will accelerate the advance [1]; yet, it is clear that this is not a 
short term issue.

Most likely, biomedical applications that rely either on the comparison 
of DNA or, generally, nucleic acid sequences, without necessarily under-
standing their biological meaning or on the biomolecular mechanisms that 
are already more or less known have the greatest likelihood to achieve im-
portance for healthcare, public health and biotechnology. To the fi rst class 
of applications belong methods for the identifi cation of the human individ-
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ual’s origin and identity, be it in the forensic, genealogy or legal context, 
but also the diagnostics of hereditary diseases and the characterization of 
food items in terms of quality and origin. With regard to the latter class of 
applications, those diseases that require the investigation of less complex 
gene networks and biomolecular mechanisms will have better chances to 
benefi t from sequencing, expression profi ling and histopathological imag-
ing informatics than those with more complex mechanisms. In this light, 
the perspectives of fi ghting infections or cancer are more promising than, 
for example, those of battling obesity since energy metabolism appears to 
be one of the most complexly regulated systems in humans.

In this context, does the sequencing of patients’ DNA in a large scale 
make sense? In several countries, for example in Norway [10], programs 
are being implemented that aim exactly at realizing this vision, the se-
quencing of the patients’ genomes and of their cancers. It appears to us 
that, at this stage, the move may be justifi ed for small, rich countries that 
have the necessary capacity to fi nance an extensive follow-up fundamen-
tal research effort to study the newly collected data since, in many cases, 
the clinical outcome for the specifi c patient might be negligible at pres-
ent. Thus, sequencing, expression profi ling, etc. make sense in a clinical 
setup where the data can enter into a research environment for proper, non-
standard data analysis and where, beyond potential benefi t for the specifi c 
patient, these expensive laboratory investigations can have serendipitous 
consequences for the scientifi c knowledge gain that might benefi t many 
other future patients.

8.1.2 MANAGEMENT OF INNOVATION CYCLES OF HIGH-
THROUGHPUT TECHNOLOGIES AND THE ROLE OF 
BIOINFORMATICS IN THIS PROCESS

In addition to fundamental scientific problems with biomolecular mecha-
nisms discovery, we need to emphasize that high-throughput technologies 
such as nucleic acid sequencing are far from mature. The renewal cycle 
involves maximally a couple of years and it might be already tomorrow 
that, due to some unexpected innovation, the equipment purchased yester-
day is hopelessly out of date even if the machines continue to look shiny. 



Since the new generation of sequencing, expression profiling and other 
high-throughput technologies tend to generate the biological data at much 
lower costs and with higher accuracy than their predecessors, it does not 
make sense to produce more data than can be properly analyzed within a 
reasonably short time frame; future researcher will rather look at regen-
erated data produced with newer technologies available then instead of 
reviving old data files.

Even for dedicated research institutions with rich budgets, it remains a 
fi nancial problem to participate in every step of technology development. 
It is not just the purchase of new pieces of equipment, but also the es-
tablishment of subsequent data analysis pipelines, software replacements 
and the training of the respective staff or even the hiring of new types of 
professionals. The latter issues might create more headache than the se-
quencer purchase itself.

Many clinical labs attached to research and other top-end hospitals 
around the world are thinking about how to prepare for a swift increase in 
genomics and proteomics analysis needs. Ever since their emergence in 
2005, next-generation sequencing (NGS) technologies have proven revo-
lutionary research tools in a variety of scientifi c disciplines of the life sci-
ences. NGS technologies are now increasingly being applied in clinical 
environment, which is partly due to the emergence of novel and effi cient 
sequencing protocols and partly to the appearance of smaller, less expen-
sive sequencing platforms. The possibilities of applying NGS in clinical 
research ranges from full human genome profi ling [11], microbiome pro-
fi ling [12] to biomarker discovery, stratifi cation of patients for clinical tri-
als, prediction of drug response and patient diagnosis. Such applications 
often involve targeted re-sequencing of genes of clinical relevance where-
by not the entire genome is sequenced, only a few dozen PCR-amplifi ed 
regions or known disease-related genes. These genes harbor diagnostic 
or causative mutations of diseases including indels and single nucleotide 
polymorphisms. Individual genes have previously been interrogated in 
clinical testing using traditional techniques such as Sanger sequencing 
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however NGS technologies have already begun to supplant the previous 
tools of choice in these areas, offering increased speed and throughput 
with reduced running costs.

Targeted re-sequencing in the clinical context presents specifi c require-
ments and new challenges also for bioinformatics which is aggravated by 
new computational needs of fast changing sequencing platforms. Just 
to mention one problem, that of multiplexing: simultaneous analyses of 
many patients for many diseases require accurate and unequivocal iden-
tifi cation of many persons and many genes within an ensemble of many 
hundred thousand reads. Molecular bar-coding makes this possible, but 
standard bioinformatics tools are not ready to handle bar-coding informa-
tion [13,14].

Clinical labs seek the advice of bioinformaticians regarding what kind 
of software to use. The usual standard answer is to use the current best 
of genomics software. Unfortunately, it is often found that these tools 
are not even always capable of doing the clinical application job, for 
example detecting specifi c mutation types. The reason is simple: Ge-
nome aligners were designed to map short reads to a whole genome, 
i.e., fi nding relatively strong similarities in a background of weak or 
minimal similarities. This scenario has called for specifi c speed-up so-
lutions and approximations, many of which may not necessarily be 
true for amplicon sequencing protocols. So, clinicians usually face two 
problems: i) Buy an expensive hardware and non-transparent, and more 
often than not, very computer time-consuming commercial software 
from the platform vendor, or ii) seek advice from trained bioinforma-
ticians who may point them to academic tools developed for genome 
analysis, but not necessarily suitable for amplicon sequencing. The so-
lution is not easy. Platform vendors cannot be blamed for proposing a 
technically sound solution which, for the moment, has no chances to 
follow the exponential growth of clinical analysis needs. So, it is the 
task of future bioinformatics projects to develop accurate and fl exible 
solutions for clinical applications.



8.2 BIOINFORMATICS MOVING TOWARDS CLINICAL 
ONCOLOGY: BIOMARKERS FOR CANCER CLASSIFICATION, 
EARLY DIAGNOSTICS, PROGNOSIS AND PERSONALIZED 
THERAPY

Losses of human lives and sufferings as a result of cancer remain one of 
the critical obstacles in prolonging active human life span. Worldwide, 
cancers are responsible for one in eight deaths [15]. In Singapore, can-
cers are the major causes of mortality and accounts for about 28.5% of all 
deaths [16]. In our present understanding, cancer is a disease involving 
genetic changes in certain cell populations that lead to cellular reprogram-
ming and uncontrolled cell division; in turn, the formation of a malig-
nant mass can create a variety of clinical symptoms. The huge individual 
genome variation and diversity of cellular phenotypes in cancers often 
complicates clinical detection, classification, prognosis and treatment of 
patients. In fact, histologically similar cancers do not necessarily repre-
sent the same disease due to differences in the biomolecular mechanisms 
leading finally to similar clinical outcomes. Consequently, among the list 
of 10 most important human diseases, the pharmacotherapy efficacy of 
cancer is very low except for a few rare subtypes [17]. The progress in 
the early diagnostics/detection and therapy of many cancers is very slow. 
For instance, for the past 30 years, ovarian cancers (OC) mortality rate has 
remained very high and unchanged, despite considerable efforts directed 
toward this disease.

Current clinical oncology needs (i) improvement of disease classifi -
cation, (ii) increased specifi city and sensitivity of early detection instru-
ments/molecular diagnostics systems, (iii) improved disease risk profi ling/
prediction, (iv) improvement of cancer therapeutic methods including next 
generation drugs with higher specifi city and lowered toxicity (ideally, in-
hibitors of the exact biomolecular mechanisms that drive individual cancer 
growth) and generally more stratifi ed or even personalized therapies, (v) 
understanding of the anti-cancer immune response, (vi) adequate moni-
toring and rehabilitation during post-treatment recovery period and (viii) 
patients’ social adaptation.
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At present, there are two main lines of support for clinical oncology 
from the side of computational biology fuelled by data generated by ge-
nomics and proteomics high-throughput technologies. On the one hand, 
genome and RNA sequencing as well as expression profi ling of cancer 
biopsy samples opens the possibility to understand the biomolecular 
mechanisms that are behind the malignant transformation in the individ-
ual patient’s tumor case. On the other hand, the status of biomarkers can 
be measured and used to provide more accurate diagnostics of a specifi c 
cancer type, prognosis and selection of personalized therapy.

8.2.1 HUNTING AFTER CANCER MUTATIONS IN A CLINICAL 
SETUP

The problems associated with large-scale sequencing and expression pro-
filing of cancers need to be seen from two sides. Whereas the technical 
aspects of correct sequence and expression profile determination from 
generally miniscule biopsy amounts are considerable but manageable (see 
a recent review of some of the IT and bioinformatics aspects [18]), the 
evaluation of the data in terms of clinically relevant conclusions for the 
specific patient is presently impossible in most cases and the clinically 
relevant effort is centered more around the question whether the actual pa-
tient happens to carry a cancer that belongs to one of the better understood 
subtypes. At the same time, sequencing and expression profiling of care-
fully selected cohorts of cancer patients are of immeasurable value for bio-
medical research aimed studying yet unknown biomolecular mechanisms.

Technically, analyzing somatic mutations in complex diseases such as 
cancer is particularly challenging since the mutant alleles can be easily 
diluted below detection thresholds due to the presence of wild type non-
tumor DNA and the inherent genetic heterogeneity of the tumor itself. The 
problem is further aggravated by the limited amount of DNA (1-100 ng) 
available from biopsies on the one hand, and the clinical sample prepara-
tion, on the other: For example, clinical samples fi xation in formalin ran-
domly breaks DNA into 200-400 bp long fragments.



The current gold standard method tries to circumvent these problems by 
applying targeted PCR amplifi cation to 100-200 bp long target sequences 
which is followed by Sanger sequencing of the PCR amplicons. Next gen-
eration sequencing (NGS) platforms such as the 454 FLX Genome analyz-
er (Roche) or Ion Torrent Personal Genome Machine (Life Technology), 
offer important advantages due to their extremely high (1000-10000 fold) 
sequence coverage. Thus, sensitivity as compared to Sanger sequencing is 
increased. This is very important for detecting low frequency mutations, 
which makes NGS an attractive option for diagnostic sequencing.

For clinical analysis of the transcriptome, deep sequencing technolo-
gies (e.g. RNA-seq, etc.) allow detecting low abundant RNA transcripts. 
Many classes of these transcripts (e.g., long non-coding RNAs) play es-
sential regulatory roles in cancer development and can potentially be used 
for clinical sub-typing, detection, prognosis and therapy design of cancers. 
Detection of the rare genome aberrations and low-abundant transcripts in 
cancers and in human body fl uids might be important. However, clini-
cal studies of such data require development of appropriated biomedical 
research infrastructure, collection of large patients’ cohorts, management 
of well-coordinated interdisciplinary research projects, dynamical and in-
tegrative databases, novel IT solutions and massive data analyses within a 
computational biology research effort.

Another advantage of NGS technology is its ability to deal with paral-
lel sequencing of multiple genes. The widely respected white paper of the 
American Society of Clinical Oncology [19] suggested that all targeted 
drugs should be registered based on the molecular profi le independently 
from the tumor type. Recently, researchers of the Massachusetts General 
Hospital argued that simultaneous analysis of 12 genes is useful for the 
diagnosis of lung cancer [20]. Therefore, there is a clinical need for tar-
geted re-sequencing of dozens of genes in each cancer patient. There are 
several, commercially available multiplex re-sequencing assays in clinical 
use today. A typical analysis for cancer targets may require PCR-based re-
sequencing of 10 to 1500, mainly exon-derived amplicons selected from 
10 to 400 genes, and a minimum amount of 10 ng DNA [21].
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8.2.2 BIOMARKERS FOR CANCER CLASSIFICATION: 
MUTATIONS IN SIGNALING PROTEINS

A biomarker is a traceable biochemical substance that is informative about 
the status of a disease or medical condition. For practical purposes, it is 
sufficient to show a close correlation between the occurrence of the bio-
marker and the cancer type and development in model systems and in 
clinical trials. Yet, the likelihood of the biomarker actually being associ-
ated with the cancer subtype considered is dramatically increased if the 
biomarker plays a role in the biomolecular mechanisms driving the cancer 
and not just in some secondary or tertiary effects of cancer growth. How-
ever, discovery of reliable diagnostic, prognostic and drug response cancer 
biomarkers faces big challenges due to patient heterogeneity, small sample 
sizes, and high data noises.

A couple of cancer subtypes well-characterized mechanistically have 
recently seen spectacularly successful treatment. Mutations in signaling 
proteins have been found to drive cells into the cancer state and the design 
of drugs that specifi cally bind to these mutated forms have been shown to 
suppress cancer development. For the drugs to be applied, a companion di-
agnostic test is necessary to verify whether the potential patient has indeed 
a cancer driven by the target supposed. As a rule, this will dramatically 
shrink the number of patients but the selected ones have a high chance 
to receive benefi ts from the treatment. Three cases illuminating the trend 
towards mutation-specifi c targeting drugs are reviewed in some detail be-
low.

Several forms of chronic myelogenous leukemia (CML) and gastroin-
testinal stromal tumors (GISTs) are characterized by the Philadelphia chro-
mosome, a chromosomal translocation, and the subsequent fusion of genes 
bcr and abl. As a result, the tyrosine kinase abl is locked in its active sig-
naling state and affecting the downstream pathways Ras/MapK (increased 
proliferation due to increased growth factor-independent cell growth), Src/
Pax/Fak/Rac (increased cell motility and decreased adhesion), PI/PI3K/
AKT/BCL-2 (suppression of apoptosis) and JAK/STAT (driving prolifera-
tion). The inhibitor Imatinib (STI571, Gleevec) inhibits bcr-abl and, as a 



result, an originally fatal disease is transformed into a chronically manage-
able one [22]. The same inhibitor is also active for some sequence variants 
of c-kit and PDGF-R (platelet-derived growth factor receptor) and, thus, 
can be applied in a handful of other cancers. Since application of the drug 
is essentially selectively killing sensitive cells, strains with resistant muta-
tions survive and it might require the application of other batteries of drugs 
to bring these strains down, too [23].

Another case with some success are melanoma subtypes with the B-
RAF mutation V600E that can be treated with vemurafenib (PLX4032, 
RG7204) [24,25]. In melanomas with mutant B-RAF (V600E), the drug 
inhibits specifi cally B-RAF (V600E) monomers. Since the ERK signaling 
inhibition is tumor-specifi c, these RAF inhibitors have a broad therapeu-
tic index and a remarkable clinical activity in patients with melanomas 
that harbor the respective B-RAF mutant (V600E). However, resistance 
invariably emerges, for example via alternative splicing. The version p61 
B-RAF (V600E) shortened by exons 4-8 shows enhanced dimerization in 
cells with low levels of RAS activation and ERK signalling is resistant to 
the RAF inhibitor [25].

Certain EGFR (epidermal growth factor receptor, another tyrosine ki-
nase) driven cancers of breast, lung, pancreas, etc. are sensitive to gefi tinib 
(Iressa) or erlotinib (Tarceva). The EGFR class includes Her1 (erb-B1), 
Her2 (erb-B2), and Her 3 (erb-B3). The EGFRs are hyper-activated due 
to a mutation in the tyrosine kinase domain and this leads to inappropriate 
activation of the anti-apoptotic Ras signalling cascade, eventually result-
ing in uncontrolled cell proliferation [26].

8.2.3 BIOMARKERS FOR CANCER CLASSIFICATION: 
UP-REGULATED GENES

The literature on cancer biomarkers is enormous and it is beyond this re-
view to be comprehensive. Here, we focus on developments with our au-
thors’ involvement.

Lung adenocarcinoma (AC) is the most common type of lung can-
cer which is the leading cause of cancer deaths in the world. The genetic 
mechanisms of the early stages and lung AC progression steps are poorly 
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understood. Currently, there are no clinically applicable gene tests for ear-
ly diagnosis and lung AC aggressiveness assessment. Recently, authors of 
this review (VK et al.) suggested a method for gene expression profi ling of 
primary tumours and adjacent tissues (PT-AT) based on a new rational sta-
tistical and bioinformatics strategy of biomarker prediction and validation, 
which could provide signifi cant progress in the identifi cation of clinical 
biomarkers of lung AC. This approach is based on the extreme class dis-
crimination (ECD) feature selection method that identifi es a combination/
subset of the most discriminative variables (e.g. expressed genes) [27]. 
This method includes a paired cross-normalization (CN) step followed by 
a modifi ed sign Wilcoxon test with multivariate adjustment carried out 
for each variable. Analysis of paired Affymetrix U133A microarray data 
from 27 AC patients revealed that 2,300 genes can discriminate AC from 
normal lung tissue with 100% accuracy. Our fi nding reveals a global re-
programming of the transcriptome in human lung AC tissue versus normal 
lung tissue and for the fi rst time estimates a dimensionality of space of po-
tential lung AC biomarkers. Cluster analysis applied to these genes identi-
fi ed four distinct gene groups. The genes related to mutagenesis, specifi c 
lung cancers, early stage of AC development, tumour aggressiveness and 
metabolic pathway alterations and adaptations of cancer cells are strongly 
enriched in the discriminative gene set. 26 predicted AC diagnostic bio-
markers (including SPP1 and CENPA genes) were successfully validated 
on qRT-PCR tissue array. The ECD method was systematically compared 
to several alternative methods and proved to be of better performance [27]. 
Our fi ndings demonstrate that the space of potential clinical biomarker 
of lung cancers is large; many dozens of combined biomarkers/molecular 
signatures are possible. This fi nding suggests that further improvement 
of computational prediction and feature selection methods is necessary 
in conjunction with systematic integration of massive and complex data 
analysis.

Similar computational approaches applied on breast cancer patients’ 
expression data allowed important new insights into molecular and clini-
cal classifi cation, tumor aggressiveness grading and identifi cation of novel 
tumor sub-types. Current statistical approaches for biomarker selection 
and signature extraction were extended by developing a hybrid univari-
ate/multivariate approach, combining rigorous statistical modeling and 
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network analysis [28]. In this approach, single survival-signifi cant genes 
can be identifi ed and used to generate important cancer related gene 
networks. The method also allows estimating the synergistic effect of 
two or several genes belonging to the same or different networks on the 
patients’ survival. With this analysis, we generated and evaluated sev-
eral related signature sets which are superior to traditional clinical prog-
nostic markers and existing breast cancer classifi cations [28-30]. The 
fi nal groupings have signifi cantly different p53 mutation status, tumor 
aggressiveness grading and metastasis events. Most importantly, it could 
be shown that the intermediate class of G2 breast cancers does not have 
a justifi cation at the level of gene expression. The G2 cases are shown 
to be either G1-like or G3-like. This implies that G2 patients with a G3-
like expression profi le are recommended to receive the more aggressive 
treatment reserved for G3 patients.

Currently, using clinical and molecular markers does not provide 
specifi c and reliable ovarian cancer (OC) patients’ stratifi cation, prog-
nosis and treatment response prediction. High-grade epithelial ovar-
ian serous carcinoma (HG-EOC), a major type of OC, is poorly de-
tected. At the molecular level, the tumors frequently exhibit altered 
expressions of many hundreds and thousands features at genome, tran-
scriptome and proteome levels. The specifi c and reliable biomarkers 
of this complex disease and appropriate therapeutic targets have not 
been defi ned yet. Similar computational approaches as described above 
in the cases of lung and breast cancers have been used to derive ex-
pression signatures for OC and they were found to include the EVI1 
gene [31].

It is also notable that non-coding RNAs can also be used as biomark-
ers [32]. To conclude, the identifi cation of reliable diagnostic, prognostic 
and drug response-related biomarkers for cancer requires integrative data 
analysis and understanding of the molecular and cellular basis of genome 
loci and gene expression and pathways.
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8.3 SEQUENCE-STRUCTURE-FUNCTION RELATIONSHIPS FOR 
PATHOGENIC VIRUSES AND BACTERIA AND THEIR ROLE IN 
COMBATING INFECTIONS

Whereas the discussion above has highlighted that sequence-function rela-
tionships are not well understood and this status will continue for a while, 
the situation for the small genomes of pathogenic viruses and bacteria is 
considerably more promising. Their genome size is much smaller (from a 
handful of genes in the case of viruses to maximum a few thousand genes 
for bacteria) and their physiology is much more completely understood at 
the level of biomolecular mechanisms. For example, there is no gene in 
the influenza virus where at least some mechanistic aspect of its molecular 
and cellular function is known; a stark contrast to the situation for the hu-
man genome where about half of the genes still await their at least initial 
characterization [1] and even the compilation of the complete proteome is 
not in sight [33].

With sequencing getting increasingly cheaper and effi cient, it became 
possible to explore the full genome of the set of strains that is actually 
invading the patient’s body. This is important since, to evade the patient’s 
immune system, the pathogen mutates and one or several of the mutants 
might fi nd the weak spots of the patient and propagate. This allows not 
only designing effi cient patient-specifi c treatment strategies, for example 
by deducing certain drug resistances theoretically from the pathogen’s 
genomic sequence before even trying actually the respective drug in the 
treatment. It provides also much better options for epidemiology and pub-
lic health since each strain can be individually determined and, thus, the 
actual spread of the pathogen can be traced geographically and in real 
time. Measures for preventing and combating epidemics can be designed 
more rationally and with lower costs for social and economic life.

Most attention with regard to rationally designed strategies for fi ght-
ing infection so far has been directed towards the acquired immunodefi -
ciency syndrome (AIDS) caused by the human immunodefi ciency virus 



(HIV) and this can rightly be considered a success story for computational 
biology. A previously absolutely fatal disease has been transformed into 
a chronic illness with high quality of life and, for many patients, with 
apparently zero viral blood counts. Not only have all the drugs against 
AIDS used in the multi-drug cocktail for high active antiretroviral thera-
py (HAART) been rationally designed against structures of HIV proteins 
to interfere into the well-studied life cycle of the virus [34]. New drugs 
appear all the time and provide new treatment opportunities for patients 
harboring strains resistant against the standard cocktails [35]. Sophisti-
cated knowledge-based therapeutic algorithms [36] are available to treat 
AIDS patients optimally depending on the mutation spectrum within the 
patient’s viral load [37,38].

Similar strategies are useful for other pathogens that try to evolve away 
from the attack of antibiotics/antiviral therapy or the immune system’s ef-
forts. Staphylococcus aureus causing a wide range of infection from skin 
to post-operative wound infections has great adaptive potential and can 
generate forms (best known as methicillin-resistant Staphylococcus au-
reus - MRSA) widely resistant against many available antibiotics. Exact 
determination of the molecular epidemiology with multi-locus sequence 
typing and other methods can be the basis for an optimized antibiotics 
selection for more effi cient therapy [39].

In the following, we explore how classical bioinformatics aimed at 
studying biomolecular sequences and structures can impact infection 
medicine in context with the infl uenza virus and the enterohemorrhagic 
E. coli pathogens.

8.3.1 GENOME SEQUENCE STUDIES OF THE INFLUENZA 
VIRUS AND PUBLIC HEALTH

Besides the occasional pandemics, recurrent seasonal influenza and its 
ongoing evolution has always been an important topic concerning pub-
lic health. Whenever a new flu strain emerges and threatens to circle the 
globe, health authorities and clinicians need to know the characteristics of 
the new virus including virulence, drug susceptibility and vaccine effica-
cy. The recent swine flu pandemic from 2009 is an excellent example how 
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computational methods can provide crucial support not only in the early 
molecular characterization [40-42] but also to follow the still ongoing 
evolution of the virus. Modern sequencing technology and increased pre-
paredness resulted in a significant worldwide increase of institutions and 
hospitals that can generate molecular sequence data from patient samples. 
But when the patient-specific strain sequences are available after sequenc-
ing ordered by hospitals or ministries, it appears that the institution cannot 
properly handle them. The expertise for the subsequent steps of compu-
tational analysis to connect the genotype to possible phenotypes is often 
sparse. Bioinformatics can be used to rapidly screen influenza sequences 
for potentially interesting mutations, for example, through comparative 
genomics, 3D structural modeling, literature text mining and plotting geo-
temporal occurrence patterns for epidemiological significance.

While this sounds exciting, are we really in a state that we can reliably 
predict relevant phenotypic changes from sequence mutations? First, the 
infl uenza genome is small and codes for only 10-13 proteins all of which 
are well characterized in their functions and there exists a mechanistic un-
derstanding how they work together as well as how they interact with the 
infected host. Second, there is wide interest in infl uenza research and the 
amount of available sequences, crystal structures, experimental data and 
associated literature is enormous which allows transferring information 
and annotations if very closely related strains are compared. For example, 
the typical Tamifl u resistance mutation H274Y in the neuraminidase pro-
tein has the same effect on equivalent positions in seasonal H3N2, old 
seasonal H1N1, pandemic H1N1, avian H5N1, etc.

But what can be said about “new” mutations? In the second wave of 
the 2009 H1N1 pandemic, a Norwegian team reported a high frequency 
of a new hemagglutinin mutation D222G in severe cases [43]. The power 
of bioinformatics for linking genotype to phenotype for infl uenza muta-
tions can be shown for this example, as within a few hours from fi rst re-
ports of the mutation one could fi nd a possible mechanistic explanation on 
how this mutation could possibly exert its severity using computational 
tools and databases alone. The fi rst obstacle is the numbering, different 
groups prefer to use old seasonal H3N2 based numberings also for H1N1 
pandemic strains but it is important to know that D222G is actually cor-
responding to the mutation D239G in the literal sequence numbering of 



circulating pandemic strains which is necessary to fi nd and count appear-
ances of this mutation in available infl uenza surveillance sequences. This 
can easily be resolved computationally by aligning with respective refer-
ence strains with defi ned numbering. Sequence alignments to strains with 
known structure can also be used to build homology models and fi nd the 
corresponding position of the mutation in the 3D structure. It turns out 
that D222/239G was located within the receptor binding pocket which 
determines the type of sugar-linked sialic acids recognized on human host 
cells but the precise effects on substrate specifi city is still challenging to 
predict in detail by docking and modeling alone. Being able to switch 
between numbering schemes is also important to fi nd prior work on re-
lated mutations in the literature. Indeed, a corresponding position in avian 
H1N1 has previously been investigated [44] as mutation G225D which is 
exactly equivalent to the new D222/225/239G but with inverted direction. 
The paper had found that G at this position is associated with preference 
for α2-3 avian-like receptor specifi city while D would bind better to α2-6 
human-like receptors. By analogy, it was possible to deduce that the new 
D222/225/239G mutation in the pandemic H1N1 could possibly shift the 
receptor preference to avian-like α2-3 receptors. The next important ad-
ditional hint from the literature was that also humans have some α2-3 re-
ceptors but they are found deeper in the lungs, notably in the bronchiolae 
[45]. Finally, everything comes together and a hypothetical mechanism on 
how the new mutation could be related to severity is apparent where the 
D239G would change the receptor specifi city to allow infections deeper in 
the lungs (Figure 1). More than a year later, this exact mechanism of the 
D222/225/239G mutation was studied in detail [46] and the experiments 
verifi ed what could be suggested already much earlier by computation-
al and literature analysis by a bioinformatics expert within a few hours. 
Many of the functions described here, have now been implemented in the 
WWW-based FluSurver that can accept patient-specifi c virus genome in-
formation and generate a clinical relevance report automatically (SMS et 
al., to be published).

There are many more examples where Bioinformatics analysis helped 
to elucidate phenotypic roles of new infl uenza mutations such as marker 
mutations of new variants rising in occurrence [47], changes in hemagglu-
tinin surface epitopes [48] and glycosylation sites as well as detect known 
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[49] and novel [50-52] mutations in the neuraminidase drug binding pock-
et that alter antiviral drug effi cacy. While the wealth of prior work on infl u-
enza is crucial for the ability to make relevant computational predictions, 
it shows that, with a concerted effort, similar successes may be achieved 
in other areas of high interest.

8.3.2 CONCLUSIONS FROM THE SEQUENCE OF THE 
ENTEROHEMORRHAGIC O104:H4 E. COLI STRAIN

Next generation sequencing has dramatically brought down the cost of ge-
nome sequencing but the current reality is that there usually is a long way 
from the initial genomic data to information relevant for clinicians. How-
ever, there are exceptions. When an enterohemorrhagic O104:H4 E. coli 
strain caused a major outbreak in Germany [53] in 2011, the genome se-
quence was rapidly available through next generation sequencing [54]. At 
the same time, the Robert Koch Institute provided the microbial character-
ization including the clinically important antibiotic susceptibility profile 
[55]. In principle, the information if a specific antibiotic drug is effective 
against an organism should be encoded in its genome by the presence of 
the known target gene of the respective drug as well as the absence of as-
sociated drug resistance factors. Clearly, the prerequisite for computation-
ally deriving an antibiotic susceptibility profile depends not only on the 
availability of the whole genome but also sufficiently complete annotation 
data for drug targets and resistance mechanisms of closely related strains 
or organisms. Since E. coli and related bacteria have been widely studied 
before in this regard, we show here that one can computationally identify 
antibiotic drugs that, potentially, can effectively target a new pathogen 
with available genome, such as the enterohemorrhagic O104:H4 E. coli 
strain. The steps to achieve this are essentially routine bioinformatics work 
but typically not easily accessible to clinicians.

First, the available genome sequences (http://www.ncbi.nlm.nih.gov/
Traces/wgs/?val=AFOB01) were searched with BLASTX [56] for close 
to identical sequence matches against a database of known drug targets 
from DrugBank [57]. Requiring at least 97% sequence identity of the E. 
coli sequences to the proteins known to be drug targets ensures that also 
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their structure will be highly similar and hence should represent the same 
drug binding properties. Second, we repeat the sequence search but this 
time against a database of known drug resistance factors from ARDB [58] 
requiring a lower threshold of at least 60% identity to conservatively pick 
up also more remote similarities to possible resistance factors. Third, we 
use a Perl script to parse the hits from the BLAST outputs as well as the 
drug target and resistance annotation data from the two databases and fi -
nally identify the list of drugs for which a known target gene was found in 
the genome but no respective associated resistance factor.

TABLE 1: Predicted potentially effective drugs against enterohemorrhagic E. coli

Antibiotic Exp. Comp.

Piperacillin/Tazobactam R* S

Cefoxitin R R

Ceftazidim R R

Cefpodoxim R R

Imipenem S S

Meropenem S S

Amikacin S S

Gentamicin S S

Kanamycin S S

Tobramycin S S

Streptomycin R R

Tetracyclin R R

Nitrofurantoin S S

Trimethoprim/Sulfamethoxazol R R

Fosfomycin S R

Experimentally measured (Exp.) versus computationally predicted (Comp.) antibiotics 
susceptibility profile. R … resistant; S… sensitive; * … defined as resistant (AES 
VITEK). Prediction and experimentally determined results coincide except for two cases 
(Piperacillin/Tazobactam and Fosfomycin) which are discussed in the text in detail.

In order to validate the results, we compared our computational anti-
biotic susceptibility profi le with the experimental results. To our positive 



surprise, 15 out of 25 experimentally tested antibiotics were also covered 
by the existing databases and could, hence, be assessed through our com-
putational workfl ow. The identity thresholds for the two sequence search-
es described above have been selected to produce the best possible match 
with the experimental data. Table 1 shows that the in silico approach cor-
rectly assigns resistance or sensitivity for 13 of the 15 antibiotics. In de-
tail, the new bacterial strain was correctly predicted to be sensitive to 7 
antibiotics and resistant to 6 drugs from the list. The only two cases of 
a mismatch from the prediction with the clinical experimental result are 
interesting and discussed below.

The fi rst case is the combination drug Piperacillin/Tazobactam which 
we fl ag as sensitive but the Robert Koch Institute as resistant. Sequence 
searches identifi ed a TEM-1 metallo beta-lactamase in O104:H4 E. coli 
which causes resistance to penicillins (including Piperacillin) by degrading 
them but we also fi nd that there exists a specifi c inhibitor against TEM-1 
metallo beta-lactamases, Tazobactam, which is given in combination with 
Piperacillin to inhibit the beta-lactamase and, therefore, increase effi cacy 
of penicillins to which this strain should otherwise be resistant. In theory, 
this means that the computational prediction that Piperacillin/Tazobactam 
is effective should be correct. However, it turns out that, in clinical prac-
tice, this drug is recommended to be avoided due to possible inoculum 
effects. Hence, the resistant fl ag from the clinical judgement according to 
the used VITEK AES experimental classifi cation system.

The second case is Fosfomycin, to which the new strain was experi-
mentally found to be sensitive while the computational approach assumed 
resistance due to the identifi cation of a multidrugeffl ux pump protein an-
notated to also export Fosfomycin. This means that either the annotation 
is inaccurate or it would be interesting to further look into the detail of 
the few sequence differences between the new and the previously known 
transporter (99% identity) to fi nd determinants of activity and substrate 
specifi city which could be considered in a future more comprehensive ap-
proach.

Overall, this crude workfl ow utilizing available databases shows that a 
computational antibiotics susceptibility profi le can be derived with some 
accuracy by combining next generation genome sequencing with further 
computational analysis, but it defi nitely still needs a critical experienced 
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doctor who further scrutinizes and selects the most suitable treatment ac-
cording to the circumstances of the infected patient as well as includes any 
new clinical fi ndings on drug responses of the respective strain.

8.3.3 BACTERIAL COMMUNICATION AND COOPERATION IN 
HEALTH AND DISEASE

The analysis of human microbiomes and small bacterial communities caus-
ing multi-bacterial diseases are among the most challenging and intriguing 
tasks of medical genome research today [59-61] also including the field 
of plant diseases [62]. The discovery of chemical communication among 
bacteria in the 1990s has fundamentally changed the traditional view that 
pictures bacteria as single-celled organisms living in isolation [63-66]. In 
the last fifteen years, it has become increasingly evident that bacteria have 
the potential to establish highly complex communities. Many microbes 
live in large, multispecies communities in which the participants jointly 
exploit the resources. Multispecies microbial consortia constitute a ma-
jor form of life that is found in environments ranging from high-altitude 
mountains (more than 8 km above sea level) to more than 10 km below 
the surface of the oceans, and have always been among the most important 
members and maintainers of the planet's ecosystem. The medical impor-
tance of this phenomenon is sweeping. Opportunistic pathogenes, such as 
Pseudonomas and Burkholderia species abound in hospital environments, 
ready to attack patients weakened by disease or injury. For instance, Pseu-
domonas aeruginosa usually does not harm a healthy human organism, 
but can be lethal in the lung of cystic fibrosis (CF) patients, or in burn 
wounds [67].

Many prokaryotes possess inter-cellular signaling systems which al-
low species to colonise new habitats, to invade hosts and to spread over 
surfaces [63-66]. A typical example is quorum sensing (QS) which enables 
bacteria to switch from low activity to high activity regimes using signal-
ing molecules as well as “public goods” (e.g. surfactants, enzymes, sid-
erophores) that facilitate movement, nutrient uptake amongst other things 
[65,66]. We share the widespread opinion that the “change of bacterial 
lifestyle” is crucial for colonizing habitats and infecting susceptible hosts 



– unfortunately the signalling systems that orchestrate the underlying com-
munication and collaboration mechanisms are not accurately annotated in 
bacterial genomes. Therefore, a systematic characterization of QS systems 
in Gram negative bacteria was carried out [68,69] and a modelling effort 
to map out the theoretically possible consequences of communication and 
collaboration in bacterial populations was initiated [70-72]. Virulence and 
adaptability of many Gram-negative bacterial species are associated with 
an N-acylhomoserine lactone (AHL) gene regulation mechanism called 
quorum sensing (QS). The arrangement of quorum sensing genes is vari-
able throughout bacterial genomes, although there are unifying themes 
that are common among the various topological arrangements. A bioinfor-
matics survey of 1403 complete bacterial genomes revealed characteristic 
gene topologies in 152 genomes that could be classifi ed into 16 topologi-
cal groups [68,69]. A concise notation for the patterns was developed and 
it was shown that the sequences of LuxR regulators and LuxI autoinducer 
synthase proteins cluster according to the topological patterns.

The macroscopic behavior of bacterial communities is notoriously dif-
fi cult to study, colony patterns, invasion/colonization events depend on a 
multitude of parameters many of which cannot be reproduced in lab cul-
tures. Therefore, computational modeling, and particularly the use of sim-
plifi ed minimal models is a very important tool for studying the behavior 
of populations in rational terms. Agent-based models of communicating 
and collaborating bacteria have developed [70]. The bacterial cells are rep-
resented by agents randomly moving on a plain (such as an agar surface), 
while consuming nutrients, secreting signal molecules and “public goods“. 
Nutrients, signals and public goods are diffusing on the surface, and their 
local concentration exceeds a threshold, the metabolism and movement of 
bacterial agent switches to a more intensive state. In this model signals are 
the means of communications, and public goods are the means of coopera-
tion as can be observed in QS bacteria. Even though highly simplifi ed, the 
model refl ects the crucial behavior patterns of communicating/cooperat-
ing bacteria in an open, nutrient/limited environment. Namely, 1) isolated 
bacteria cannot survive; only bacteria reaching a critical population size 
(“quorum“) have a chance for survival. 2) Bacteria self-organize into com-
pact communities or “active zones” in which signals and public goods are 
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present in suffi cient amounts [70]. 3) Collaborating communities can col-
lapse if non-cooperating mutants are present [71,72].

Modeling the mutants of QS mechanisms is highly relevant for dis-
ease prevention. There is a very vivid interest from the pharmaceutical 
and pesticide industries, analysts agree that interventions targeting quo-
rum sensing are among the major trends of the future. Since many bacteria 
use quorum sensing for infection, it is plausible to think about jamming 
strategies. According to one such scenario, one can saturate the surface of 
a plant with a signal molecule that will call bacteria to attack. If a lonely 
pathogen lands on the surface, it will immediately start to attack, but at 
the wrong time and place. Since it is alone, it will perish. Or, we can put a 
gene into the plant that produces an enzyme capable of destroying the sig-
nal molecule of the pathogenic bacteria, so that those will never wage an 
attack. But both strategies can strike back since they can also destroy the 
signaling of the benefi cial bacteria that are essential to the host. According 
to a third scenario one may prevent the growth of an infecting pathogen by 
a greedy but antibiotic sensitive mutant of the same species, and then we 
eliminate the mutant by an antibiotic that specifi cally acts on that mutant. 
This is very appealing, but what do we do if the mutant created to heal gets 
some harmful genes or looses its antibiotic susceptability? Many similar 
questions can be studied using computational models [73].

8.4 IMPACT OF BIOIMAGE INFORMATICS ON HEALTHCARE

Most likely, the penetration of automated evaluation tools for the analysis 
of clinically relevant histological images in diagnostic contexts is one of the 
areas that will experience great changes in the near future. The process of 
biomedical imaging involves little or no discomfort to the patients, while 
providing an effective tool for diagnosis. However, successful usage of im-
ages requires a high level of human intelligence, making automated image 
analysis by machines a challenging task. Currently, the gold standard for di-
agnosis through imaging is by experienced clinicians, typically radiologists 
or pathologists. It takes many years to train proficient clinicians to analyze 
images manually and, despite that, this gold standard is not perfect and suf-
fers from subjective variations between different clinicians.



Advances in image processing, pattern recognition and computer vi-
sion in the past decades have boosted the possibilities for the application 
of computing technology. Currently, the focus is on computer aided diag-
nosis rather than to achieve a fully automated approach. Software that can 
support decision making and reduce the workload of clinicians, especially 
in routine operations, is extremely useful and valuable. Besides the direct 
derivation of clinically relevant conclusions from the images, such sys-
tems call also for the integration with databases of medical ontologies, the 
patients’ medical records, etc.

Computational image analysis methods can be broadly categorized 
into those used for assessment, diagnosis and surgery. This section at-
tempts to cover several exemplary areas of imaging and image analysis 
in healthcare. Because of the large extent of research work ongoing in 
academic bioimage informatics and medical image analysis and the grow-
ing engagement of the industry, this section cannot be comprehensive but 
rather we seek to cover a broad spectrum.

8.4.1 DIGITAL PATHOLOGY

Advances in computer vision and microscopy instrumentation have made 
digital pathology an important emerging field. The objective is to aid the 
pathologist in the analysis of high resolution cellular images obtained 
through biopsy. For example, highlighting regions of interest or reducing 
diagnostic variation can generate a big impact. Histological images from 
various organs such as prostate [74], breast [75] and liver have been the 
object of algorithm development.

Here, we shall focus our discussion on prostate digital pathology. Pros-
tate cancer has a high prevalence rate worldwide. For example, it is the 
most common non-cutaneous male cancer in the United States [76] and 
it is the 3rd most common male cancer in Singapore [16]. The American 
Cancer Society report in 2009 estimates 192,280 new prostate cancer cas-
es with 27,360 prostate cancer specifi c death [76]. The severity of prostate 
cancer diagnostics is compounded by disagreements between individual 
pathologists with regard to grading using the Gleason classifi cation [77]. 
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This agreement between different pathologist can be as low as 70% [78] 
and up to 29% of Gleason gradings were different between pre- and post-
operative prostate cancer specimen [79]. Hence, having objective com-
puter algorithms to aid in prostate pathology assessment is essential to 
improve diagnosis.

Most computational methods are developed to analyze microscopy 
images on the standard hematoxylin/eosin stain. The goals are gland seg-
mentation since the architecture of glands is critical for Gleason grad-
ing and the identifi cation and segmentation of nuclei since this is use-
ful for detecting nuclei signatures specifi c to cancerous cells. Common 
computer vision techniques used are level sets [80], fractal analysis [81] 
and machine learning [80,82-86]. These techniques are used to segment 
glands [80,85] and nuclei [82,84] or to identify regions of malignancy 
directly [83].

8.4.2 COMPUTER VISION IN DERMATOLOGY

Assessment of skin condition and health is both important for clinical 
medicine as well as for the cosmetics industry. At present, assessment of 
the skin typically involves a trained dermatologist who will examine fea-
tures such as textures and landmarks. While training of dermatologists 
takes many years, the subsequent diagnosis suffers from subjective in-
terpretation differing among dermatologists. Hence, a more objective ap-
proach is in demand.

Considerable effort is ongoing to analyze skin surfaces through the 
use of objective computational methods. Protocols to ensure objective 
and consistent imaging of human skin (for example, in a well-controlled 
lighting environment) are vital for reliable diagnosis by computer al-
gorithms [87-89]. Image acquisition is followed by the application of 
task-dependent image processing and computer vision methods. Liu et 
al. [90] use texture analysis to create an objective way of evaluating the 
effectiveness of treatment. A neural network framework has been de-
veloped to analyze the human skin conditions such as color, roughness, 
glossiness or tension [91,92]. Skin images have also been studied with 



data mining methods [88,93] and via modeling/reconstructing the skin 
surface [89,94].

8.4.3 COMPUTER VISION IN EYE DISEASES

Imaging methods for eye diseases are unique among bioimaging tech-
niques because images of the eyes are easily accessible using conventional 
light cameras. There is no need for expensive and sophisticated machines 
such as a computer tomograph or magnet resonance imager. A common 
imaging modality is the optical coherence tomography; other imaging 
methods such as fundus photography, ultrasound and infra-red imaging 
are also used. Although image analysis has been used in the assessment of 
many eye diseases, we will focus our discussion on glaucoma and dry eye 
disease in this paper.

8.4.3.1 ANGLE CLOSURE GLAUCOMA

According to a world health organization report [95], glaucoma is a major 
global cause of blindness (approximately 5.2 million cases and about 15% 
of all cases of blindness). The impact of glaucoma on public health will 
increase with an aging population. However, the lack of a comprehensive 
measure of glaucoma compounded with its ability to cause sudden blind-
ness makes it hard for treatment planning. Surprisingly, about 50-90% 
of potential patients in the world are unaware that they have glaucoma 
[96,97].

Glaucoma is classifi ed into angle closure and open angle glaucoma 
according to the drainage angle, the angle between the cornea and iris. 
Primary angle closure glaucoma is the major form of glaucoma in Asia, in 
particular, among the Chinese population. It was suggested that angle clo-
sure glaucoma causes more blindness than open angle glaucoma in rela-
tive terms [98].

A common way for assessment of angle closure glaucoma is through 
gonioscopy in which the doctor uses an optical instrument to look at the 
anterior chamber to decide if the drainage angle is open or close. 
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Ultrasound [99] and optical coherence tomography (OCT) [100] images 
are also used for assessment. Computer vision techniques are used for ana-
lyzing eye images derived from the different modalities. As it takes much 
effort to master the technique of gonioscopy, Cheng et al. [101] developed 
a computational technique for RetCam images. A machine-learning based 
method aids glaucoma diagnosis by analyzing the cup-to-disc ratio mea-
sured on fundus images [102]. OCT images provide high resolution and a 
3D view of the anterior chamber. Image analysis software has been devel-
oped to make precise measurements of important geometric information 
such as anterior chamber area, anterior chamber width, iris thickness, etc. 
on OCT images [103]. These data can then be correlated to generate new 
clinical knowledge [104,105].

8.4.3.2 IMAGE ANALYSIS IN ASSESSING THE DRY EYE 
CONDITION

The disease of dry eye has no clear definition; generally, it is a condition 
in which there is an unstable tear film during the open eye state. The dry 
eye condition has a prevalence rate of 10-20% in Sweden, Japan, Australia 
and several other countries. The most common treatment of dry eye is ap-
plication of eye drops [106].

One cause of dry eye disease is meibomian gland dysfunction. The 
meibomian glad is located at the inside of the tarsel plate that supplies 
meibum, an oily substance, which forms a protective layer to the tear fi lm. 
Dysfunction of meibomian glands causes lack of meibum and, often, re-
sulted in degeneration of meibomian glands.

The morphology of meibomian glands can be imaged using an infra-
red camera mounted on a conventional slit lamp camera [106]. This im-
aging technology has enabled the application of advanced computer vi-
sion techniques for better diagnosis and patient management. Images from 
healthy meibomian glands shows a strip like pattern in gland morphology; 
with the strips being relatively straight, parallel and equally spaced. Im-
ages of highly degenerated glands show no strip like patterns at all, but 
only small isolated regions of remnant glands. Morphology for early stage 



disease shows twisting, non-parallel and unequally spaced strip like pat-
terns [106].

While the process of imaging is simple and relatively cheap, the analy-
sis of the morphology of meibomian glands and other clinical examina-
tions that eventually lead to diagnosis and treatment require trained oph-
thalmologists with experience in handling dry eye patients. Unfortunately, 
there is no clear objective criteria for grading meibomian glands morphol-
ogy degeneration, although some schemes have been suggested [106]. In-
ter-individual variation will also cause problems. Hence, large population 
screens on meibomian glands morphology does not directly lead to overall 
increase in better management of the disease.

An effective way to circumvent the problem of cost and inter-individu-
al variation is to develop advanced computer vision techniques to process 
and grade images of meibomian glands. A team from Singapore has de-
veloped an image analysis software that can enhance infra-red images of 
meibomian glands, segment the strip-like patterns and extract important 
features for classifying the images [107].

8.4.5 IMAGE ANALYSIS FOR ASSISTED SURGERY

Pre-planning is an important component to the success of surgery, so 
that surgical operations can be performed systematically, completely and 
swiftly. Usually, planning involves studies of 3D images of the part of 
the patient’s body where the operation will be performed. Image assisted 
surgery is available or being developed for almost all parts of the human 
body, for example for brain, liver, heart, gastrointestinal tract and for hand 
reconstruction surgery. The digital 3D image is enhanced by advanced 
computer graphics, visualization and various forms of accurate geometri-
cal measurements done by the computer. This enhancement is very im-
portant because the human mind cannot decipher 3D objects represented 
on a 2D computer screen effectively. We are also unable to make accurate 
geometrical measurements. In this case, the computer essentially provides 
the “ruler” to make measurements.
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8.4.6 TUMOR SEGMENTATION

Accurate measurements are particularly important in the case of surgery 
aimed at removing tumors. The size of the tumor is an important prognos-
tic factor for treatment. 1D and 2D measurements such as tumor length, 
the largest axis length or cross sectional area had been used as a measure 
of tumor sizes. However, studies have shown that tumor volume provides 
a more accurate estimate of the tumor size [108,109]. Accurate measure-
ment of tumor sizes calls for effective segmentation of tumors. Once prop-
erly segmented, the tumor size can be calculated trivially. Tumors occur 
in many parts of the human body and different segmentation algorithms 
are developed for segmenting tumors in different organs. The literature 
in this area is vast. In the following, we focus on liver tumors. Liver can-
cer accounts for about one million deaths per year [110]. Segmentation 
is usually done on computer tomography images. Many techniques have 
been developed to segment liver and its tumor including region growing 
[109,111], statistical techniques [109], machine learning [108,109], active 
contours [112], fuzzy c-means [113] and watershed [114].

Surgery planning also needs careful consideration of the vasculature 
structure around the tumor and their relationship with the tumor. Hence, 
segmentation of the vasculature structure can aid the surgeon to visualize 
the structure and location of vessels [115].

8.5 CONCLUDING REMARKS

The development and implementation of analytical and computational 
tools provided from the side of bioinformatics and bioimaging analysis 
provide opportunities for quality interaction among biotechnology, funda-
mental life science research and clinical studies. Bioinformatics findings 
can be translated into innovations that are adopted by the healthcare sys-
tem and biomedical industry in form of diagnostic kits, analysis programs, 
etc. after the validation in both bench and clinical studies. In this article, 
we present several examples of how clinically relevant conclusions can be 



drawn from sequencing, expression profiling or histopathological bioim-
aging data with computational biology algorithms.

Unfortunately, considerable basic research is still necessary to make 
full use of the potential opportunities that are associated with the increas-
ing availability of high-throughput technologies such as genome sequenc-
ing, mainly since most of the genome’s hidden functional information is 
not known; the understanding of biomolecular mechanisms that translate 
genotype into phenotype is limited. But the progress in this fi eld is uneven; 
pathogen sequencing can already provide important insights in contrast, 
for example, to sequencing of cancer samples.

Since an effi cient healthcare system must be aligned to social, econom-
ic and political infrastructure of the country and focus on evidence-based 
prophylactic, prevention, diagnosis, prognosis, prediction and treatments 
that are proven to provide quality service and clinical outcome in a cost-
effective manner, genomics, proteomics and other new technologies will 
fi rst have to demonstrate in a research hospital setting that they can have a 
dramatic effect in improving health care, also cost-wise in addition to pro-
viding better quality of life, before the approaches will penetrate the rou-
tine healthcare systems. Nevertheless, it is very clear that major advances 
in diagnostics and treatments for infections as well as cancers, circulatory 
and metabolic diseases that are critical for improving most healthcare sys-
tems will arise from these developments in a medium to longer time frame.

As we have seen above, genome information of pathogens linked with 
the geographic origin allows tracing the spread of infections and parasites. 
Similarly, analyzing the geographic, even better spatio-temporal distribu-
tion of disease occurrences can provide hints for environmental infl uences 
[116,117]. Generally, going beyond the patient-centric approach and the 
linking of biomolecular and clinical data of populations with geograph-
ic information, data on food and environment, etc. will be an important 
source for improving public health, for stopping epidemics, for fi nding 
sources of food or environmental poisoning and for improving life styles.

REFERENCES

1. Eisenhaber F: A decade after the first full human genome sequencing: When will we 
understand our own genome? J Bioinformatics Comp Biol 2012, 10:12710.  

236 Omics in Clinical Practice



How Bioinformatics Influences Health Informatics 237

2. The Human Genome Project Completion: Frequently Asked Questions3-26-2012 
http://www.genome.gov/11006943

3. Sequencing competition heats up3-28-2012 http://rna-seqblog.com/news/sequenc-
ing-competition-heats-up/

4. Eisenhaber F: Bioinformatics: Mystery, Astrology or Service Technology. Preface. 
In Discovering Biomolecular Mechanisms with Computational Biology. 1st edi-
tion. Edited by Eisenhaber F. Georgetown: Landes Biosciences and Eurekah.com; 
2006::1-10. 

5. Bio-IT World 10th Anniversary 2002-20122-8-2012 http://www.bio-itworld.
com/10th-Anniversary/

6. Collins FS, McKusick VA: Implications of the Human Genome Project for medical 
science. JAMA 2001, 285:540-544.  

7. Lander ES: Initial impact of the sequencing of the human genome. Nature 2011, 
470:187-197.  

8. Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM: Functional complexity and 
regulation through RNA dynamics. Nature 2012, 482:322-330.   

9. Guttman M, Rinn JL: Modular regulatory principles of large non-coding RNAs. 
Nature 2012, 482:339-346.  

10. DNA-sequencing penetrates Norway's healthcare system3-2-2012 http://www.
fiercemedicaldevices.com/story/dna-sequencing-penetrates-norways-healthcare-
system/2012-02-03

11. Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio Deiros D, Chen DC, Nazareth L, 
Bainbridge M, Dinh H, Jing C, Wheeler DA, et al.: Whole-genome sequencing in 
a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med 2010, 362:1181-
1191.  

12. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, 
McEwen JE, Wetterstrand KA, Deal C, et al.: The NIH Human Microbiome Project. 
Genome Res 2009, 19:2317-2323.   

13. Hajibabaei M, Singer GA, Hebert PD, Hickey DA: DNA barcoding: how it comple-
ments taxonomy, molecular phylogenetics and population genetics. Trends Genet 
2007, 23:167-172.  

14. Kozarewa I, Turner DJ: 96-plex molecular barcoding for the Illumina Genome Ana-
lyzer. Methods Mol Biol 2011, 733:279-298.  

15. Stratton MR, Campbell PJ, Futreal PA: The cancer genome. Nature 2009, 458:719-
724. 

16. Singapore Cancer Registry: Trends in cancer incidence in Singapore 2001-2005. 
Singapore Cancer Registry interim report. 2008. 

17. Trusheim MR, Berndt ER, Douglas FL: Stratified medicine: strategic and economic 
implications of combining drugs and clinical biomarkers. Nat Rev Drug Discov 
2007, 6:287-293.  

18. Valencia A, Hidalgo M: Getting personalized cancer genome analysis into the clinic: 
the challenges in bioinformatics. Genome Med 2012, 4:61.  

19. Kris NG, Meropol NJ, Winer EP: ASCO’s Blueprint for Transforming Clinical and 
Translational Cancer Research, November 2011. Alexandria, VA: American Society 
of Clinical Oncology; 2011.   

http://rna-seqblog.com/news/sequencing-competition-heats-up/
http://www.bio-itworld.com/10th-Anniversary/
http://www.fiercemedicaldevices.com/story/dna-sequencing-penetrates-norways-healthcare-system/2012-02-03
http://www.Eurekah.com


20. Sequist LV, Heist RS, Shaw AT, Fidias P, Rosovsky R, Temel JS, Lennes IT, Digum-
arthy S, Waltman BA, Bast E, et al.: Implementing multiplexed genotyping of non-
small-cell lung cancers into routine clinical practice. Ann Oncol 2011, 22:2616-
2624.   

21. Ion AmpliSeq™ Cancer Panel8-10-2012 http://www.iontorrent.com/lib/images/
PDFs/ampliseq%20appnote.pdf

22. Schiffer CA: BCR-ABL tyrosine kinase inhibitors for chronic myelogenous leuke-
mia. N Engl J Med 2007, 357:258-265.  

23. Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD: Second gener-
ation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid 
leukaemia. Nat Rev Cancer 2007, 7:345-356.  

24. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, 
Garbe C, Testori A, Maio M, et al.: Improved survival with vemurafenib in mela-
noma with BRAF V600E mutation. N Engl J Med 2011, 364:2507-2516.   

25. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, Shi H, Atefi 
M, Titz B, Gabay MT, et al.: RAF inhibitor resistance is mediated by dimerization of 
aberrantly spliced BRAF(V600E). Nature 2011, 480:387-390.   

26. Saintigny P, Burger JA: Recent advances in non-small cell lung cancer biology and 
clinical management. Discov Med 2012, 13:287-297.  

27. Toh SH, Prathipati P, Motakis E, Kwoh CK, Yenamandra SP, Kuznetsov VA: A ro-
bust tool for discriminative analysis and feature selection in paired samples impacts 
the identification of the genes essential for reprogramming lung tissue to adenocar-
cinoma. BMC Genomics 2011, 12(Suppl 3):S24.  

28. Motakis E, Ivshina AV, Kuznetsov VA: Data-driven approach to predict survival 
of cancer patients: estimation of microarray genes' prediction significance by Cox 
proportional hazard regression model. IEEE Eng Med Biol Mag 2009, 28:58-66.  

29. Grinchuk OV, Motakis E, Kuznetsov VA: Complex sense-antisense architecture of 
TNFAIP1/POLDIP2 on 17q11.2 represents a novel transcriptional structural-func-
tional gene module involved in breast cancer progression. BMC Genomics 2010, 
11(Suppl 1):S9.  

30. Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J, Lindahl T, Pawitan Y, 
Hall P, Nordgren H, et al.: Genetic reclassification of histologic grade delineates new 
clinical subtypes of breast cancer. Cancer Res 2006, 66:10292-10301.  

31. Bard-Chapeau EA, Jeyakani J, Kok CH, Muller J, Chua BQ, Gunaratne J, Batagov 
A, Jenjaroenpun P, Kuznetsov VA, Wei CL, et al.: Ecotopic viral integration site 1 
(EVI1) regulates multiple cellular processes important for cancer and is a syner-
gistic partner for FOS protein in invasive tumors. Proc Natl Acad Sci U S A 2012, 
109:2168-2173.   

32. Batagov AO, Kuznetsov VA, Kurochkin IV: Identification of nucleotide patterns en-
riched in secreted RNAs as putative cis-acting elements targeting them to exosome 
nano-vesicles. BMC Genomics 2011, 12(Suppl 3):S18.  

33. Sirota FL, Batagov A, Schneider G, Eisenhaber B, Eisenhaber F, Maurer-Stroh S: 
Beware of moving targets: reference proteome content fluctuates substantially over 
the years. J Bioinform Comput Biol 2012, 10:1250020.  

34. Vogel M, Schwarze-Zander C, Wasmuth JC, Spengler U, Sauerbruch T, Rockstroh 
JK: The treatment of patients with HIV. Dtsch Arztebl Int 2010, 107:507-515.   

238 Omics in Clinical Practice

http://www.iontorrent.com/lib/images/PDFs/ampliseq%20appnote.pdf


How Bioinformatics Influences Health Informatics 239

35. Wilson LE, Gallant JE: HIV/AIDS: the management of treatment-experienced HIV-
infected patients: new drugs and drug combinations. Clin Infect Dis 2009, 48:214-
221.  

36. Eberle J, Gurtler L: The evolution of drug resistance interpretation algorithms: 
ANRS, REGA and extension of resistance analysis to HIV-1 group O and HIV-2. 
Intervirology 2012, 55:128-133.  

37. Martinez-Cajas JL, Wainberg MA: Antiretroviral therapy: optimal sequencing of 
therapy to avoid resistance. Drugs 2008, 68:43-72.  

38. Gianella S, Richman DD: Minority variants of drug-resistant HIV. J Infect Dis 2010, 
202:657-666.    

39. Deurenberg RH, Stobberingh EE: The evolution of Staphylococcus aureus. Infect 
Genet Evol 2008, 8:747-763.  

40. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu 
X, Skepner E, Deyde V, et al.: Antigenic and genetic characteristics of swine-origin 
2009 A(H1N1) influenza viruses circulating in humans. Science 2009, 325:197-201.   

41. Maurer-Stroh S, Ma J, Lee RT, Sirota FL, Eisenhaber F: Mapping the sequence 
mutations of the 2009 H1N1 influenza A virus neuraminidase relative to drug and 
antibody binding sites. Biol Direct 2009, 4:18.  

42. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, 
Cheung CL, Raghwani J, Bhatt S, et al.: Origins and evolutionary genomics of the 
2009 swine-origin H1N1 influenza A epidemic. Nature 2009, 459:1122-1125.  

43. Kilander A, Rykkvin R, Dudman SG, Hungnes O: Observed association between the 
HA1 mutation D222G in the 2009 pandemic influenza A(H1N1) virus and severe 
clinical outcome, Norway 2009-2010. Euro Surveill 2010, 15:19498.  

44. Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA: Structure 
and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 
2006, 312:404-410.  

45. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y: Avian flu: influenza 
virus receptors in the human airway. Nature 2006, 440:435-436.  

46. Watanabe T, Shinya K, Watanabe S, Imai M, Hatta M, Li C, Wolter BF, Neumann G, 
Hanson A, Ozawa M, et al.: Avian-type receptor-binding ability can increase influ-
enza virus pathogenicity in macaques. J Virol 2011, 85:13195-13203.   

47. Maurer-Stroh S, Lee RT, Eisenhaber F, Cui L, Phuah SP, Lin RT: A new common 
mutation in the hemagglutinin of the 2009 (H1N1) influenza A virus. PLoS Curr 
2010, 2:RRN1162.   

48. Barr IG, Cui L, Komadina N, Lee RT, Lin RT, Deng Y, Caldwell N, Shaw R, Maurer-
Stroh S: A new pandemic influenza A(H1N1) genetic variant predominated in the 
winter 2010 influenza season in Australia, New Zealand and Singapore. Euro Sur-
veill 2010, 15:19692.  

49. Inoue M, Barkham T, Leo YS, Chan KP, Chow A, Wong CW, Tze Chuen LR, Maur-
er-Stroh S, Lin R, Lin C: Emergence of oseltamivir-resistant pandemic (H1N1) 2009 
virus within 48 hours. Emerg Infect Dis 2010, 16:1633-1636.   

50. Hurt AC, Lee RT, Leang SK, Cui L, Deng YM, Phuah SP, Caldwell N, Freeman 
K, Komadina N, Smith D, et al.: Increased detection in Australia and Singapore 
of a novel influenza A(H1N1)2009 variant with reduced oseltamivir and zanamivir 
sensitivity due to a S247N neuraminidase mutation. Euro Surveill 2011, 16:19884.  



51. Nguyen HT, Trujillo AA, Sheu TG, Levine M, Mishin VP, Shaw M, Ades EW, Kli-
mov AI, Fry AM, Gubareva LV: Analysis of influenza viruses from patients clini-
cally suspected of infection with an oseltamivir resistant virus during the 2009 pan-
demic in the United States. Antiviral Res 2012, 93:381-386.  

52. Van der Vries E, Veldhuis Kroeze EJ, Stittelaar KJ, Linster M, der LA V, Schrauwen 
EJ, Leijten LM, Van AG, Schutten M, Kuiken T, et al.: Multidrug resistant 2009 
A/H1N1 influenza clinical isolate with a neuraminidase I223R mutation retains its 
virulence and transmissibility in ferrets. PLoS Pathog 2011, 7:e1002276.   

53. Frank C, Faber MS, Askar M, Bernard H, Fruth A, Gilsdorf A, Hohle M, Karch H, 
Krause G, Prager R, et al.: Large and ongoing outbreak of haemolytic uraemic syn-
drome, Germany, May 2011. Euro Surveill 2011., 16 

54. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, 
Szczepanowski R, Ji Y, Zhang W, et al.: Prospective genomic characterization of 
the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next 
generation sequencing technology. PLoS One 2011, 6:e22751.   

55. Characterization of EHEC O104:H46-30-2011 http://www.rki.de/cln_178/
nn_217400/EN/Home/EHECO104

56. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: 
Gapped BLAST and PSI-BLAST: a new generation of protein database search pro-
grams. Nucleic Acids Res 1997, 25:3389-3402.   

57. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu 
V, et al.: DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. 
Nucleic Acids Res 2011, 39:D1035-D1041.   

58. Liu B, Pop M: ARDB–Antibiotic Resistance Genes Database. Nucleic Acids Res 
2009, 37:D443-D447.   

59. Sibley CD, Rabin H, Surette MG: Cystic fibrosis: a polymicrobial infectious dis-
ease. Future Microbiol 2006, 1:53-61.  

60. Sibley CD, Duan K, Fischer C, Parkins MD, Storey DG, Rabin HR, Surette MG: 
Discerning the complexity of community interactions using a Drosophila model of 
polymicrobial infections. PLoS Pathog 2008, 4:e1000184.   

61. Sibley CD, Parkins MD, Rabin HR, Duan K, Norgaard JC, Surette MG: A polymi-
crobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic 
fibrosis patients. Proc Natl Acad Sci U S A 2008, 105:15070-15075.   

62. Hosni T, Moretti C, Devescovi G, Suarez-Moreno ZR, Fatmi MB, Guarnaccia C, 
Pongor S, Onofri A, Buonaurio R, Venturi V: Sharing of quorum-sensing signals and 
role of interspecies communities in a bacterial plant disease. ISME J 2011, 5:1857-
1870.   

63. Bassler BL: Small talk. Cell-to-cell communication in bacteria. Cell 2002, 109:421-
424.  

64. Camilli A, Bassler BL: Bacterial small-molecule signaling pathways. Science 2006, 
311:1113-1116.   

65. Fuqua C, Parsek MR, Greenberg EP: Regulation of gene expression by cell-to-cell 
communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 2001, 
35:439-468.  

66. Fuqua C, Greenberg EP: Listening in on bacteria: acyl-homoserine lactone signal-
ling. Nat Rev Mol Cell Biol 2002, 3:685-695.  

240 Omics in Clinical Practice

http://www.rki.de/cln_178/nn_217400/EN/Home/EHECO104


How Bioinformatics Influences Health Informatics 241

67. Collier DN, Anderson L, McKnight SL, Noah TL, Knowles M, Boucher R, Schwab 
U, Gilligan P, Pesci EC: A bacterial cell to cell signal in the lungs of cystic fibrosis 
patients. FEMS Microbiol Lett 2002, 215:41-46.  

68. Gelencsér Z, Choudhary KS, Coutinho BG, Hudaiberdiev S, Galbáts B, Venturi V, 
Pongor S: Classifying the topology of AHL-driven quorum sensing circuits in pro-
teobacterial genomes. Sensors 2012, 12:5432-5444.   

69. Gelencsér Z, Galbáts B, Gonzalez JF, Choudhary KS, Hudaiberdiev S, Venturi V, 
Pongor S: Chromosomal arrangement of AHL.driven quorum sensing circuits in 
Pseudomonas. ISRN Microbiology 2012, 2012:484176.  

70. Netotea S, Bertani I, Steindler L, Kerenyi A, Venturi V, Pongor S: A simple model 
for the early events of quorum sensing in Pseudomonas aeruginosa: modeling bacte-
rial swarming as the movement of an “activation zone“. Biol Direct 2009, 4:6.  

71. Venturi V, Bertani I, Kerenyi A, Netotea S, Pongor S: Co-swarming and local col-
lapse: quorum sensing conveys resilience to bacterial communities by localizing 
cheater mutants in Pseudomonas aeruginosa. PLoS One 2010, 5:e9998.   

72. Venturi V, Kerenyi A, Reiz B, Bihary D, Pongor S: Locality versus globality in 
bacterial signalling: can local communication stabilize bacterial communities? Biol 
Direct 2010, 5:30.  

73. Kerényi A, Suárez-Moreno ZR, Venturi V, Pongor S: Multispecies microbial com-
munities. Part II: Principles of molecular communications. Medical Mycology 2010, 
17:113-116.  

74. Demir C, Yener B: Automated cancer diagnosis based on histopathological images: 
a systematic survey. Technical report TR-05-09. 2005. [Computer Science Depart-
ment of Rensselaer Polytechnic Institute]  

75. Huang CH, Veillard A, Roux L, Lomenie N, Racoceanu D: Time-efficient sparse 
analysis of histopathological whole slide images. Comput Med Imaging Graph 
2011, 35:579-591.  

76. American Cancer Society, Inc: Surveillance Research, Updated March 2010. 2010. 
77. Gleason DF: Histologic grading of prostate cancer: a perspective. Hum Pathol 1992, 

23:273-279.  
78. Allsbrook WC Jr, Mangold KA, Johnson MH, Lane RB, Lane CG, Epstein JI: In-

terobserver reproducibility of Gleason grading of prostatic carcinoma: general pa-
thologist. Hum Pathol 2001, 32:81-88.  

79. Grossfeld GD, Chang JJ, Broering JM, Li YP, Lubeck DP, Flanders SC, Carroll PR: 
Under staging and under grading in a contemporary series of patients undergoing 
radical prostatectomy: results from the Cancer of the Prostate Strategic Urologic 
Research Endeavor database. J Urol 2001, 165:851-856.  

80. Naik S, Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J: Automated 
gland and nuclei segmentation for grading prostate and breast cancer histopathology. 
Proc IEEE Int Symp Biomed Imaging 2008, :284-287.  

81. Huang P-W, Lee C-H: Automated classification for pathological prostate images 
based on fractal analysis. IEEE Trans Medical Imaging 2009, 28:1037-1050.  

82. Arif M, Rajpot N: Classification of potential nuclei in prostate histology images 
using shape manifold learning. Proc. Int Conference in Machine Vision 2007, :113-
118.  



83. Doyle S, Rodriguez C, Madabhushi A, Tomaszeweski J, Feldman M: Detecting 
prostatic adenocarcinoma from digitized histology using a multi-scale hierarchical 
classification approach. Conf Proc IEEE Eng Med Biol Soc 2006, 1:4759-4762.  

84. Hafiane A, Bunyak F, Palaniappan K: Level set-based histology image segmenta-
tion with region-based comparison.Microscopic Image Analysis with Applications 
in Biology Workshop 2008, :1-6. 

85. Naik S, Doyle S, Feldman M, Tomaszewski J, Madabhushi A: Gland segmentation 
and computerized Gleason grading of prostate cancer histology by integrating low-, 
high-level and domain specific information. Microscopic Image Analysis with Ap-
plications in Biology Workshop 2007, :1-8. 

86. Teverovskiy M, Kumar V, Ma J, Kotsianti A, Verbel D, Tabesh A, Pang H-Y, Ven-
grenyuk Y, Fogarasi S, Saidi O: Improved prediction of prostate cancer reoccurrence 
based on an automated tissue image analysis system. IEEE Intl.Symp.Biomedical 
Imaging 2004, :257-260.  

87. Jacques SL, Ramella-Roman JC, Lee K: Imaging skin pathology with polarized 
light. J Biomed Opt 2002, 7:329-340.  

88. Nakao D, Tsumura N, Miyake Y: Real-time multi-spectral image processing for 
mapping pigmentation in human skin. Proc 9th IS&T/SID Color Imaging Confer-
ence 1995, 9:80-84.  

89. Yamada T, Saito H, Ozawa S: 3D shape inspection of skin surface from rotation of 
light source. Intl Conf Quality Control by Artificial Vision 1999, :245-251.  

90. Liu J, Bowyer K, Goldgof D, Sarkar S: A comparative study of texture measures for 
human skin treatment. Intl Conf Information, Communications and Signal Process-
ing 1997, :170-174. 

91. Takemae Y, Morimaya T, Ozawa S: The correspondence between physical features 
and subjective evaluation on skin image. Proceedings of The 1999 IEICE General 
conference 1999, :268.  

92. Takemae Y, Saito H, Ozawa S: The evaluating system of human skin surface condition 
by image processing. IEEE Intl Conf System, Man and Cybernetics 2000, :218-223.  

93. Sparavigna A, Marazzato R: An image processing analysis of skin textures. Skin Res 
Technol 2010, 16:161-167.  

94. Yamada T, Saito H, Ozawa S: 3D reconstruction of skin surface from image se-
quence. IAPR Workshop on Machine Vision Applications 1998, :742-745.  

95. Thylefors B, Negrel AD: The global impact of glaucoma. Bull World Health Organ 
1994, 72:323-326.   

96. Foster PJ, Oen FT, Machin D, Ng TP, Devereux JG, Johnson GJ, Khaw PT, Seah SK: 
The prevalence of glaucoma in Chinese residents of Singapore: a cross-sectional popu-
lation survey of the Tanjong Pagar district. Arch Ophthalmol 2000, 118:1105-1111.  

97. Sathyamangalam RV, Paul PG, George R, Baskaran M, Hemamalini A, Madan RV, 
Augustian J, Prema R, Lingam V: Determinants of glaucoma awareness and knowl-
edge in urban Chennai. Indian J Ophthalmol 2009, 57:355-360.   

98. Quigley HA, Congdon NG, Friedman DS: Glaucoma in China (and worldwide): 
changes in established thinking will decrease preventable blindness. Br J Ophthal-
mol 2001, 85:1271-1272.   

99. Amerasinghe N, Aung T: Angle-closure: risk factors, diagnosis and treatment. Prog 
Brain Res 2008, 173:31-45.  

242 Omics in Clinical Practice



How Bioinformatics Influences Health Informatics 243

100. Nolan WP, See JL, Chew PT, Friedman DS, Smith SD, Radhakrishnan S, Zheng C, 
Foster PJ, Aung T: Detection of primary angle closure using anterior segment optical 
coherence tomography in Asian eyes. Ophthalmology 2007, 114:33-39.  

101. Cheng J, Tao D, Liu J, Wong DW, Lee BH, Baskaran M, Wong TY, Aung T: Focal 
biologically inspired feature for glaucoma type classification. Med Image Comput 
Comput Assist Interv 2011, 14:91-98.  

102. Ahmed IIK, MacKeen LD: A new approach to imaging the angle. Glaucoma Today 
2007, 2007:28-30.  

103. Console JW, Sakata LM, Aung T, Friedman DS, He M: Quantitative analysis of 
anterior segment optical coherence tomography images: the Zhongshan Angle As-
sessment Program. Br J Ophthalmol 2008, 92:1612-1616.  

104. Wang B, Sakata LM, Friedman DS, Chan YH, He M, Lavanya R, Wong TY, Aung 
T: Quantitative iris parameters and association with narrow angles. Ophthalmology 
2010, 117:11-17.  

105. Wang BS, Narayanaswamy A, Amerasinghe N, Zheng C, He M, Chan YH, Nongpiur 
ME, Friedman DS, Aung T: Increased iris thickness and association with primary 
angle closure glaucoma. Br J Ophthalmol 2011, 95:46-50.  

106. Arita R, Itoh K, Inoue K, Amano S: Noncontact infrared meibography to document 
age-related changes of the meibomian glands in a normal population. Ophthalmol-
ogy 2008, 115:911-915.  

107. Koh YW, Celik T, Lee HK, Petznick A, Tong L: Detection of meibomian glands and 
classification of meibigraphy images. J Biomed Optics 2012, 17:086008.  

108. Zhou J, Xiong W, Ding F, Qi T, Wang Z, Oo T, Venkatesh SK: Liver workbench: 
a tool suite for liver and liver tumor segmentation and modeling. Advances in Soft 
Computing 2012, 120:193-208.  

109. Zhou JY, Wong DW, Ding F, Venkatesh SK, Tian Q, Qi YY, Xiong W, Liu JJ, Leow 
WK: Liver tumour segmentation using contrast-enhanced multi-detector CT data: 
performance benchmarking of three semiautomated methods. Eur Radiol 2010, 
20:1738-1748.  

110. Bosch FX, Ribes J, Borras J: Epidemiology of primary liver cancer. Semin Liver Dis 
1999, 19:271-285.  

111. Zhao B, Schwartz LH, Jiang L, Colville J, Moskowitz C, Wang L, Leftowitz R, Liu 
F, Kalaigian J: Shape-constraint region growing for delineation of hepatic metastases 
on contrast-enhanced computed tomograph scans. Invest Radiol 2006, 41:753-762.  

112. Yim PJ, Foran DJ: Volumetry of hepatic metastases in computed tomography us-
ing watershed and active contour algorithms. IEEE Symp Computer-Based Medical 
Systems 2003, :329-335.  

113. Yim PJ, Vora AV, Raghavan D, Prasad R, McAullife M, Ohman-Strickland P, Nosher 
JL: Volumetric analysis of liver metastases in computed tomography with the fuzzy 
C-means algorithm. J Comput Assist Tomogr 2006, 30:212-220.  

114. Ray S, Hagge R, Gillen M, Cerejo M, Shakeri S, Beckett L, Greasby T, Badawi RD: 
Comparison of two-dimensional and three-dimensional iterative watershed segmen-
tation methods in hepatic tumor volumetrics. Med Phys 2008, 35:5869-5881.   

115. Chi Y, Liu J, Venkatesh S, Huang S, Zhou J, Tian Q, Nowinski W: Segmentation of 
Liver Vasculature from Contrast Enhanced CT Images using Context-based Voting. 
IEEE Trans Biomed Eng 2011, 58:2144-2153.  



116. Bai H, Ge Y, Wang J-F, Liao YL: Using rough set theory to identify villages affected 
by birth defects: the example of Heshun, Shanxi, China. Int J Geographical Informa-
tion Science 2010, 24:559-576.  

117. Kolovos A, Angulo J, Modis K, Papantonopoulos G, Wang JF, Christakos G: Model-
driven development of covariances for spatiotemporal environmental health assess-
ment. Environ Monit Assess 2012, 2012:1-17.  

118. Wikimedia commons: patient body and organ8-15-2012 http://commons.wikimedia.
org/wiki/File:Symptoms_of_swine_flu.svg

119. Wikimedia commons: infected cell8-15-2012 http://commons.wikimedia.org/wiki/
File:Virus_Replication.svg

244 Omics in Clinical Practice

http://commons.wikimedia.org/wiki/File:Symptoms_of_swine_flu.svg
http://commons.wikimedia.org/wiki/File:Virus_Replication.svg


CHAPTER 9

This chapter was originally published under the Creative Commons Attribution License. Huzarewich 
RLCH, Siemens CG, and Booth SA. Application of “omics” to Prion Biomarker Discovery. Journal of 
Biomedicine and Biotechnology 2010 (2010). http://dx.doi.org/10.1155/2010/613504.

APPLICATION OF “OMICS” TO 
PRION BIOMARKER DISCOVERY

RHIANNON L. C. H. HUZAREWICH, CHRISTINE G. SIEMENS,
AND STEPHANIE A. BOOTH

9.1 INTRODUCTION

Prion diseases, or Transmissible Spongiform Encephalopathies (TSEs), 
are invariably fatal neurodegenerative diseases associated with the con-
version of the normal host cellular prion protein (PrPC) into the abnormal 
protease-resistant isoform (PrPSc) [1]. They occur in a wide range of host 
species including humans, the most common of which is sporadic CJD 
(sCJD), occurring at a rate of approximately 1 case per million a year 
worldwide and accounts for greater than 80% of CJD cases [2]. Amino 
acid changes, which include point or insertional mutations in the normal 
(cellular) prion protein (PrPC) encoded by the PRNP gene, are linked to 
genetic prion diseases such as Gerstmann-Strausler-Sheinker (GSS) dis-
ease, fatal familial insomnia (FFI), and genetically associated Creutzfeldt-
Jakob disease (CJD). Acquired forms of disease are caused by ingestion 



of, or exposure to, contaminated biological material via food or during 
medical procedures. Kuru, found amongst the Fore tribe in Papua-New 
Guinea, was the first known human transmissible spongiform encephalop-
athy and resulted from exposure to infected material during ritualistic can-
nibalism. More recently a new human prion disease has emerged, variant 
CJD (vCJD), which is associated with exposure to the BSE agent in beef. 
Cases of iatrogenic transmission have also occurred through the use of im-
properly sterilized surgical instruments, the use of human growth hormone 
derived from cadaveric pituitaries, and transplantation of corneas and dura 
mater from infected patients [3]. Recently, human-to-human transmission 
of vCJD has been reported through blood transfusion [4]; human-adapted 
prions are more readily transmitted from human to human via this route 
than via ingestion of BSE prions from contaminated meat products [5].

Animals affected by TSEs include sheep (Scrapie), cattle (BSE) and 
mule, deer, elk (CWD). The impact of animal TSEs is twofold; fi rstly, 
there is a risk of transmission to humans, and secondly, the economic im-
pact on animal production has been substantial. Although scrapie has been 
endemic for hundreds of years in many parts of the world its transmission 
to humans has never been reported. However, when vCJD in humans was 
determined to be associated with consumption of contaminated food there 
was concern as to what extent the population has been exposed. In the 
recent years, the incidence of CWD has increased markedly within North 
America and although it has not been linked to CJD either epidemiologi-
cally, or by laboratory confi rmation, there is concern about the possibility 
for cross-species transmission [6, 7]. TSEs in animals have caused huge 
economic loses. Since the BSE epidemic began in 1986, millions of cattle 
have been slaughtered and bans on the importation of beef have affected 
many countries and cost billions of dollars.

The threat posed to public health by dietary and medical exposure to 
prions has driven tremendous efforts to develop sensitive methods of de-
tection of prions to control the spread of human and animal TSEs. All 
the commercially available diagnostic tests for TSEs rely on the direct 
detection of the proteinase K resistant, misfolded form (PrPSc) of cellular 
prion protein in the central nervous system (CNS). Although methodolo-
gies are sensitive and specifi c for postmortem diagnosis, the use of PrPSc 
as a preclinical or general biomarker for surveillance is diffi cult, due to the 
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fact that it is present in extremely small amounts in accessible tissues or 
body fl uids such as blood, urine, saliva, and cerebrospinal fl uid (CSF). Re-
cently, amplifi cation techniques have been developed which have enabled 
increased sensitivity. These are based on the ability of the disease-related 
abnormal isoform, PrPSc, to convert a pool of normal PrPC to a proteinase 
K resistant form thus “amplifying” the original infectious seed. Amplifi ca-
tion can be increased by breaking down the resulting aggregated seeds of 
PrPSc to smaller units which in turn act as seeds for further replication until 
levels of PrPSc detectable by Western blot or ELISA are produced. These 
developments may provide the sensitivity necessary for a blood or food 
screening test useful for some of the transmissible TSEs. However, it has 
recently been reported that proteinase K sensitive, pathological isoforms 
of PrP may have a signifi cant role in the pathogenesis of some prion dis-
eases [8]. Novel PrPSc isoforms with unique biochemical properties may 
be generated in sporadic or acquired disease that exhibit increased sen-
sitivity to PK digestion. Therefore, conventional tests may show signifi -
cant discordance between the amounts of PrPSc detected and the infectivity 
observed. Accordingly, the development of new diagnostic tests that do 
not rely on PK digestion is desirable. Another challenge for diagnosis and 
surveillance is that hosts can incubate infectious prion agents for many 
months or years, during which time they exhibit no overt symptoms. Incu-
bation periods for some human prion diseases can be as long as 40 years 
and given the recent cases of vCJD transmitted by blood transfusion the 
need for development of a test for screening blood has increased. Further-
more, a noninvasive test to identify the early stages of CJD would be valu-
able in the development of treatment strategies for TSEs.

A biomarker is defi ned as a discriminative feature that can be mea-
sured objectively and used as an indicator of biological processes such as 
normal health, pathogenic processes, or pharmacological responses to a 
therapeutic treatment. Biomarkers include physical traits such as tempera-
ture or blood pressure, imaging of pathological features such as amyloid 
deposition or ventricular volume changes in the brain, and the presence 
of biological molecules in tissues and body fl uids such as blood or urine. 
One aim of biomarker discovery is the detection of molecular correlates 
of disease that can be used as early diagnostic tools. However, this type of 
marker has a crucial requirement for high sensitivity and specifi city. Few 



markers of this type have emerged from omics studies, not only for prion 
diseases but also for the multitude of other diseases that have been investi-
gated. Biomarkers with broad specifi city for neurodegeneration (not only 
in TSEs) may also be useful as general indicators of disease pathology; 
identifi cation of biomarkers to follow the progression of disease would 
signifi cantly impact the time and cost required to evaluate the effi cacy of 
therapeutic interventions.

The search for biomarkers (other than PrPSc) as tools for diagnosis of 
prion diseases has a long history; in fact there are several protein markers 
in cerebrospinal fl uid (CSF) that are useful for diagnosis of human prion 
diseases. In 1980, two proteins were identifi ed by 2D electrophoresis in 
the CSF of sporadic CJD patients. One of these, a 30 kDa polypeptide, 
was identifi ed as a member of the 14-3-3 family of proteins, a normal neu-
ronal protein that is released into the CSF after neuronal insult. The CSF 
detection of 14-3-3 protein by Western blot is widely used as diagnostic 
evidence of CJD, in conjunction with clinical indicators of prion disease 
[9]. The detection of 14-3-3 in CSF is a highly sensitive marker for sCJD, 
iCJD, and the genetic form of CJD, however, is much less sensitive for 
diagnosis of vCJD, GSS, and FFI [10]. A number of other proteins are 
also increased in the CSF of CJD patients including Tau and phospho-Tau, 
S-100, and neuron-specifi c enolase (NSE). Levels of the tau protein are 
raised in patients affected by all forms of CJD including vCJD. A recent 
study determined that the detection of tau in CSF has a sensitivity of 80% 
and specifi city of 94% for vCJD, higher than any of the other markers 
tested. Testing for the presence of multiple markers, 14-3-3 protein in CSF 
plus tau, results in the highest sensitivity for the use of these biomarkers 
in diagnosis of human TSEs [11]. These CSF biomarkers have proven to 
be extremely useful in confi rmatory diagnostics of CJD cases, and their 
widespread use illustrates an important role for surrogate marker detec-
tion in prion disease. They do not, however, have comprehensive value 
for surveillance of transmitted TSEs and are useful only when the disease 
is already at an advanced state. Ideally biomarkers able to detect all TSEs 
even at preclinical stages of infection are desirable. This paper will focus 
on recent efforts to harness the plethora of omic technologies to identify 
not only potentially diagnostic biomarkers, but also markers to follow dis-
ease progression or which have risk determining potential.
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9.2 TOOLS FOR BIOMARKER IDENTIFICATION IN TSES

In the last few years technologies to study all the genes and proteins ex-
pressed in an organism or cells simultaneously have become accessible 
for most laboratories, and these provide a platform for biomarker discov-
ery. Experimental strategies to detect biomarkers generally involve com-
parisons of mRNA, protein, peptide, and metabolite abundances between 
samples collected from infected versus control tissues. The most com-
monly used technologies are described here, followed by discussion of 
approaches that are being used in the identification of useful biomarkers in 
relation to prion disease, as well as potential directions for future research.

9.2.1 DIFFERENTIALLY EXPRESSED MRNA BIOMARKERS

High-throughput genomic techniques, most commonly DNA microarrays 
and subtractive hybridization approaches, are the most frequently reported 
methodologies used for the identification of deregulated genes in tissues 
and cells [12]. These expression profiles, or “signatures,” can themselves 
be used grossly as biomarkers, are relatively easy to generate, and the 
techniques can be readily adapted to high throughput. Signatures can be 
compared across multiple time points, tissues, or experimental populations 
to look for molecules predictive of disease. With the advent of ultra-high-
throughput sequencing technologies, researchers are increasingly turning 
to deep sequencing for gene expression studies [13–15]. Advantages over 
microarray approaches are that different variants or “isoforms” of mRNA 
generated by differential splicing, alternative termination, and alternative 
transcriptional start sites are all identified. Additionally, these methodolo-
gies are also well suited for the identification and profiling of small RNAs, 
such as miRNAs, which are increasingly thought to play important roles 
in neurodegenerative diseases and may be useful biomarkers [16]. One re-
cent innovation that has been applied to high-throughput sequencing is the 
purification of RNA from ribosome complexes prior to deep sequencing to 
capture those templates actively undergoing translation. This method has 
been found to be more reflective of protein abundance than are traditional 



microarray or sequenced mRNA profiles and may improve the ability to 
infer protein biomarkers from RNA profiles [17].

TABLE 1: Genes with differential abundances in prion disease and other neurodegenerative 
disorders.

Gene Description Reference for 
Prion Disease

Other Neurodegenerative 
Disorder*

ABCA1 ATP-binding cassette, subfamily 
A (ABC1), member 1

[20, 22, 23] AD

APLP1 Amyloid beta (A4) precursor-like 
protein 1

[20] AD

APOD Apolipoprotein D [20, 20, 23, 25, 28] AD, NPC

APOE Apolipoprotein E [20, 22, 25] AD, PD, and MTS

B2M Beta-2-microglobulin [20, 22, 25, 29] AD, Tay-Sachs, Sandoff 
disease, and MTS

CD9 CD9 molecule [20, 22, 23, 25] SSPE, CMT

CLU Clusterin [20, 25, 30] AD, PD

CST3 Cystatin C (amyloid angiopathy 
and cerebral hemorrhage)

[20, 25. 30] AD, MTS

CTSB Cathepsin B [20, 22, 25] AD, seizures, Tay-Sachs, 
and Sandhoff disease

CTSS Cathepsin S [20, 22, 23, 25, 28] AD

GFAP Glial fibrillary acidic protein [20, 22, 23, 25, 28] Tay-Saches, Sandhoff 
disease, MTS, and AD

SPARC Secreted protein, acidic, cysteine-
rich (osteonectin)

[20] Tay-Sachs, Sandhoff dis-
ease, and MTS

SPP1 Secreted phosphoprotein 1 
(ostepontin, bone sialoprotein I, 
early T-lymphocyte activation 1)

[20, 22] PD

*AD: Alzheimer's Disease; PD: Parkinson's Disease; NPCL Niemann Pick type C; MTSL 
Mesial temporal sclerosis; SSPE: Subacute sclerosing panencephalitis; CMT: Charcot-
Marie Tooth disease

Changes in mRNA profi les in brain tissue from CJD patients are in-
frequently studied due to the rarity of cases. Only one report has been 
published using tissues isolated from the postmortem brain samples of 
sporadic CJD patients; transcriptional changes pointed to alterations in 
neuronal dysfunction pathways including the cell cycle, cell death, and 
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the stress response [18]. A number of genomic analyses of brain tissue 
from rodent adapted models of prion diseases including CJD, scrapie and 
BSE have been performed, as well as investigation of samples from larger 
animals, sheep infected with scrapie and cattle infected with BSE [19–27]. 
These studies have revealed widespread alterations of multiple cellular 
pathways correlating with the onset of pathological disease including cho-
lesterol homeostasis, ion homeostasis, and regulation of apoptosis, stress 
response, and metal ion homeostasis. The most consistent fi nding between 
experimental models, relates to the onset of neuroinfl ammation, a pro-
cess common to many neurodegenerative diseases that is likely induced by 
damage and death of neurons. Accordingly, many of these transcriptional 
changes have been consistently identifi ed in multiple neurodegenerative 
diseases and a selection of these is listed in Table 1. Although differential 
expression of these genes may not be specifi c to prion diseases, neuroin-
fl ammation-related gene expression may be an excellent choice as candi-
date biomarkers to track the stage of development of the neurodegenera-
tive process and to predict the response to therapy.

Studies to correlate the temporal changes in neuronal health during dis-
ease have not yet been reported in prion-infected neurons; however, hip-
pocampal neurons from Alzheimer’s disease (AD) patients have revealed 
a transcriptional response comprising thousands of genes that signifi cantly 
correlates with AD markers [31, 32]. It is possible that at least in part, these 
biological processes may be common to degenerating neurons in multiple 
degenerative conditions. In this case these biomarkers may well be broadly 
applicable to track the progression of neurodegeneration. As the vast ma-
jority of human samples are collected postmortem, animal models may be 
the only practical way of assessing early markers of neuronal status prior 
to obvious clinical symptoms. A number of studies have attempted to use 
genomics to determine transcriptional changes at preclinical stages of dis-
ease; however, due to the cellular complexity of brain tissue only modest 
fold changes are revealed. Subtle alterations occurring in a small number of 
neurons at the onset of disease are likely masked. To get the best results from 
this type of study it is essential to use large sample numbers for statistical 
signifi cance. Neuron specifi c expression changes may be masked even at 
late stages of disease by the extensive astrocytosis and gliosis that accompa-
ny neuronal degeneration. Neurons, and therefore their genetic material, are 



outnumbered 10 or 20 to 1. Laser capture microdissection to excise specifi c 
cell populations is set to overcome many of the limitations of whole tissue 
analysis and will undoubtedly provide a new “layer” of information regard-
ing specifi c cellular responses to prion replication.

9.2.2 DIFFERENTIALLY EXPRESSED PROTEIN BIOMARKERS

Protein biomarkers are particularly well suited for measuring and detect-
ing phenotypic characteristics of disease processes. Proteomic technolo-
gies enable the exhaustive analysis of the protein content of a tissue or 
bodily fluid sample. Only in the recent years has technological advances 
facilitated the differential measurement of protein abundance levels be-
tween multiple conditions at a given time, and just as importantly, pro-
vided sufficient “through-put” to attach statistical significance to protein 
biomarker detection. Proteomics of prion infected tissues also suffer from 
some of the same drawbacks of genomics studies; samples are often very 
heterogeneous due to cellular complexity and the stage of disease. One 
of the major caveats of proteomics for prion disease discovery is that the 
commonly used rodent models provide very small sample volumes, espe-
cially in terms of bodily fluids such as blood, from which only the most 
abundant proteins can be identified. The laser capture microdissection 
techniques hold much promise for genomic studies to reduce cell hetero-
geneity as the small amounts of nucleic acid can be amplified by poly-
merase chain reaction (PCR). However, proteins cannot be amplified and 
ultra-sensitive techniques must be developed in order to perform similar 
proteomic studies. New techniques for labelling small amounts of pro-
tein such as fluorescence saturation labelling may be one step in the right 
direction to overcome these limitations. This technique has enabled pro-
teomic analysis of hippocampal CA1 neurons in an Alzheimer’s mouse 
model; however identification of such small amounts of protein requires 
increased sensitivity of mass spectrometry techniques [33]. Given these 
problems and the scarcity of samples from large animal models and hu-
man TSE cases, it is not surprising that only a very small number of prion-
related proteomic studies have been reported. Table 2 provides a general 
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summary of these, and some examples from similar studies of neurode-
generative diseases with similar aetiologies as proof of principle.

TABLE 2: Potential Biomarkers of Neurodegenerative Diseases Identified by Mass 
spectrometry (MS) and 2D-Gel Electrophoresis.

Marker Fluid Disease* Reference

10 kDa subunit of vitronectin Serum AD [34, 35]

alpha 1-acid glycoprotein Serum AD [34, 35]

alpha 1-antichymotrypsin Urine CJD [36]

Apolipoprotein B100 Serum AD [34, 35]

Apolipoprotein E Serum and CSF AD and PD [29, 34, 35]

Cathelicidin antimicrobial peptide 
(Bos taurus)

Urine BSE [37]

Clusterin Urine, CSF, blood, 
and plasma

BSE and AD [37–39]

Complement C3 component C3dg Serum ALS and PD [40]

Complement C3 components of C3c 
family

Serum ALS, PD, and 
AD

[34, 35, 40]

Complement C4 Serum AD [34, 35]

Complement Factor H Serum and Plasma ALS, PD, and 
AD

[34, 35, 40, 41]

Fragment Bb of Complement Factor B Serum PD [40]

Haptoglobin -2 chain Serum and CSF AD and PD [29, 34, 35]

Heart-type fatty acid binding protein 
(H-FABP)

Plasma and CSF CJD and AD [42]

Hemoglobin -2 chain Serum AD [34, 35]

Histidine-rich glycoprotein Serum AD [34, 35]

Ig Gamma-2 chain C region 
(Bos taurus)

Urine BSE [37]

Transthyretin Serume and CSF CJD, AD, and 
PD

[29, 34, 35, 43]

Uroguanylin Urine BSE [37]

Vitronectin precursor Serum AD [34, 35]

-2-macroglobulin (-2M) Plasm and Serum AD [34, 35, 41]

*AD: Alzheimer's Disease' PD: Parkinson's Disease; ALS: Amyotrophic lateral sclerosis



Current methodologies for proteomics follow two principal steps. 
Firstly proteins are separated to provide a sample with decreased com-
plexity and then mass spectrometry (MS) is used for protein identifi cation. 
Separation techniques include surface-enhanced laser desorption ionizing 
time of fl ight (SELDI-TOF), two-dimensional gel electrophoresis (2D-
GE) and the recently developed two-dimensional differential gel electro-
phoresis (2D-DIGE) for differential protein analysis, and liquid chroma-
tography (LC). All of these methodologies are not inherently quantitative 
but have been adapted to allow the user to identify qualitative changes be-
tween samples, for example, differential abundances of proteins between 
diseased and control tissues.

Surface-enhanced laser desorption ionizing time of fl ight (SELDI-
TOF) is a mass spectrometry technique that is based on a combination of 
techniques, chromatography, and matrix-assisted laser desorption ioniza-
tion time of fl ight (MALDI-TOF) [44]. In the fi rst step of SELDI-TOF 
MS proteins are captured using different platform chemistries such as 
absorption, electrostatic interaction, and affi nity chromatography which 
reduce the complexity of the original sample. This happens on a small 
“protein-chip” surface which enables multiple separations to be performed 
on very small sample volumes at high throughput. Following this, the 
bound proteins are cocrystallized with an energy absorbing matrix (EAM) 
which is then vaporized propelling the ionized proteins down the fl ight 
tube through an electric fi eld based upon the particles mass/charge (m/z) 
ratio. Contact of complexes with the detector at the end of the fl ight tube 
results in a unique peak resolved by m/z ratio of the original protein or 
protein isoform. The advantages of this method are the ability to perform 
high-throughput analysis of hundreds or thousands of samples, resolving 
power of the captured proteins, and the ease of analysis using dedicated 
user friendly software. However, protein peaks of interest must be ex-
perimentally isolated for identifi cation using peptide mass fi ngerprinting 
along with protein purifi cation techniques. This step requires much larger 
sample volumes than used in the initial discovery stage and can be arduous 
and time-consuming.

In 2D gel electrophoresis separation of proteins is performed in a poly-
acrylamide gel according to their size and their charge thus enabling reso-
lution of multiple isoforms of an individual protein. The spot intensities 
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can be used to calculate differences in protein abundance between different 
samples and individual protein spots can then be excised from the gel and 
identifi ed using MS. Practical issues such as variations in sample prepa-
ration make it very diffi cult to get consistently reproducible gels making 
this methodology labour intensive. Recent adaptations to this methodol-
ogy have improved the situation somewhat, with the most signifi cant in-
novation being labelling of samples using fl uorescence dyes (2D-DIGE). 
In this way it is possible to include three samples per gel, control and 
infected samples plus an internal standard (pooled samples). This creates a 
standard for each protein in the analysis resulting in the user being able to 
make comparisons across different gels with a high degree of confi dence 
[45].

In LC the sample components interact to a varying extent with a chro-
matographic packing material in a column (stationary phase). A pump 
moves the mobile phase through the column, and the sample is separated 
based on a retention time through the column which varies depending on 
the interactions between the stationary phase, the molecules being ana-
lyzed, and the solvent used. Generally protein samples are enzymatically 
digested prior to loading on the column. This differs from both SELDI and 
2D-GE in which it is generally intact proteins that are separated. In one di-
mension the peptide mixtures are generally too complex to separate; how-
ever, in combination with chromatography or 2D gel electrophoresis the 
methodology provides a means to perform large-scale proteomic analysis 
with good dynamic range. Labelling of peptides with isotopes enables this 
methodology to be used to identify the differential abundance of peptides 
between samples. To do this a stable isotope is used to label peptides. The 
labelled peptide is chemically identical to its native counterpart, so it be-
haves in an identical fashion during chromatographic separation, however 
it is distinguishable by MS, therefore variation in abundance between a 
tagged and untagged sample can be determined. A number of approaches 
using this methodology have been described including Isotope Coded Af-
fi nity Tagging (ICAT) and the recently described Isobaric Tagging for Rel-
ative and Absolute Protein Quantifi cation (iTRAQ) quantitative proteomic 
approach [46]. iTRAQ is ideally suited for biomarker applications, as it 
provides both quantifi cation and allows some degree of multiplexing in a 
single reagent. The isotopic tag can be incorporated either during sample 



labelling or in vivo (stable isotope labelling, SILAC), further increasing 
its scope [47].

MS to identify the mass/charge ratio of the peptide/protein of inter-
est or to determine the primary sequence of the peptide is the fi nal step 
in all proteomic approaches. This step involves ionization of the sample; 
MALDI and electrospray ionization (ESI) are the most commonly used 
technologies for this. In MALDI the sample is mixed with a matrix, ap-
plied to a target surface and inserted into a vacuum chamber and a laser 
is used to activate sample ionization. In ESI the sample is dissolved in 
a solvent and pumped through a narrow, stainless steel capillary. A high 
voltage is applied to the tip of the capillary, which is situated within the 
ionisation source of the mass spectrometer, and as a consequence of this 
strong electric fi eld, the sample emerging from the tip is dispersed into an 
aerosol of highly charged droplets. A gas, usually nitrogen, helps this pro-
cess and directs the spray emerging from the capillary tip towards the mass 
spectrometer. The ionized sample is generally resolved based on the m/z 
ratio in a time-of-fl ight (TOF) analyser. However, a number of choices for 
ion sources are available and these can be combined with different spec-
trometers. One promising innovation is fourier transform mass spectrom-
etry (FTMS), a popular tool for discovery due to its high resolving power, 
mass measurement accuracy, multistage MS/MS potential, and extended 
dynamic range [48]. When accompanied by 1D or 2D electrophoresis, 
FTMS has demonstrated an excellent ability to deal with sample complex-
ity for biomarker discovery [49].

One further innovative method sometimes used in biomarker discovery 
is the antibody microarray, the proteomic equivalent of gene microarrays. 
In these arrays specifi c antibodies are spotted onto glass or membranes, 
or bound to beads in fl uidic arrays. Target proteins are then captured from 
samples of plasma or disrupted tissue and detected using an ELISA type 
approach using labelled secondary antibodies. The use of these arrays has 
not been described in prion disease; however a study to screen the abun-
dance of 120 signalling proteins in plasma from Alzheimer’s patients was 
recently reported. A total of 259 samples were analysed with the antibody 
panel, and 18 proteins were identifi ed as potential biomarkers. These pro-
teins were used to classify blinded samples from Alzheimer's and control 
subjects with close to 90% accuracy as well as identifying patients with 
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mild cognitive impairment that progressed to Alzheimer's disease 2–6 
years later. The 18 proteins are involved in biological processes known to 
be disrupted in neurodegeneration including deregulation of haematopoi-
esis, immune responses, apoptosis and neuronal support [50].

9.3 SEARCHING THE BODY FOR PRION RELATED BIOMARKERS

The complexity of prion-induced neurodegenerative diseases along with 
their unique molecular mechanisms poses huge challenges to understand 
their biology and to identify antemortem biomarkers. In addition the dis-
eases are aetiologically heterogeneous. Prion diseases are unique in that 
they can occur in one of three ways, spontaneously, via genetic changes, 
or acquired through oral or iatrogenic transmission of the infectious agent. 
Spontaneous or genetic forms of the disease arise and progress solely in 
the brain, with minimal to no agent replication in the periphery. Only in 
the case of a TSE transmitted by digestion or blood transfusion, such as in 
vCJD, does the initial replication of the agent take place in the periphery. 
Implications of these aetiologies are that diagnostic biomarkers, especial-
ly for preclinical stages of disease, will unlikely encompass all forms of 
prion disease.

Prions acquired from different sources, strains, or different genetic ori-
gins present with differing symptoms, incubation periods, and pathobio-
logical features will result in ambiguities in biomarker detection. Accord-
ingly, the tissues and bodily fl uids chosen for biomarker selection need to 
be tailored to the TSE under study and the specifi c aim of biomarker selec-
tion. For example, blood or lymphoid tissue may be the sample of choice 
for selection of a preclinical marker of vCJD infection, brain tissue for 
indicators of prognosis, and blood or urine to follow disease progression 
or perhaps to identify individuals more susceptible to disease or particular 
treatments.

While specifi city to prion disease would be a requirement for identify-
ing preclinical cases or screening donated blood, for example, progression 
of disease could be followed using markers of broader specifi city such as 
indicators of CNS damage and neuronal death. To further complicate the 
selection of biomarkers in prion disease the long incubation period prior 



to development of clinical symptoms, from many months to many years, 
may well result in temporal differences in marker expression. Therefore 
disease stage, as well as target tissue, needs to be taken into account when 
deciding on a sampling strategy and evaluating biomarkers. The greatest 
public health risk accompanies those TSEs that can be transmitted in food, 
medical products, and blood such as vCJD or any future novel outbreaks. 
A closer look at prion pathogenesis in these instances may lead to the iden-
tifi cation of appropriate tissues and body fl uids for early detection of prion 
diseases. A summary of these potential tissues and body fl uids is given in 
Figure 1(a). In Figure 1(b) a schema illustrating the incubation period of 
a typical TSE indicating disease stages optimal for identifi cation of bio-
markers for different purposes is provided. In the next section we describe 
some of these tissues and bodily fl uids that are potential reservoirs for 
biomarkers in more detail, and review related biomarker studies.

9.3.1 BIOMARKERS IN LYMPHOID TISSUES

Following ingestion of contaminated foodstuffs, PrPSc must be transported 
from the gut to the brain. Current data suggests that PrPSc crosses the gut 
epithelium, possibly through M cells, and rapidly accumulates in the gut-
associated lymphoid tissues (GALTs), mainly in the mesenteric lymph 
nodes, and then in the spleen early in the preclinical phase prior to neu-
roinvasion. Two studies of gene expression changes have been described 
using tissue from infected and control Peyers patches. In the first samples 
from cattle orally infected with BSE revealed 90 genes and 16 ESTs to be 
differentially expressed. Of these genes, five were found to be related to 
immune function. These were major histocompatibility complex (MHC) 
class II, MHC class II DQ alpha, L-RAP, and two hypothetical proteins. 
Other differentially expressed genes identified related to cellular and met-
abolic processes including the development and maturation of cells [51]. 
In the second study the mRNA level of a pancreatitis-associated protein 
(PAP)-like protein was found to be elevated in the ileal Peyer's patch of 
lambs during the early phase of scrapie infection [52]. Although the first 
study tissue analysed was 12 months following oral inoculation Peyers 
Patches may be sources of very early disease specific markers.
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In B cell follicles, PrPSc is detected on follicular dendritic cells (FDCs) 
networks and macrophages within germinal centres (GCs) [53–55] of the 
spleen and lymph nodes. Although prion infection still occurs in the ab-
sence of FDCs, the infection is severely delayed suggesting that FDCs are 
signifi cant cellular sites of peripheral replication [53, 56, 57]. The lympho-
invasion step is an appealing point in the disease process for the identifi ca-
tion of biomarkers as it occurs prior to neuroinvasion in those TSEs with 
ingestion aetiologies and is thus the optimal time point for early diagnosis 
or therapeutic intervention [58]. In addition lymphoid tissues are also more 
accessible than brain tissue for sampling purposes. Despite this, very few 
studies describing gene or protein biomarkers associated with prion repli-
cation in spleen or lymph nodes have been published. A recent study has 
identifi ed changes in the expression of St6gal1, St3gal5, Man2a1, Hexb, 
Pigq, glycosylation-related genes, in the spleens of scrapie infected mice 
[59]. The authors suggest that this indicates modifi cation of the splenic 
metabolism of glycosphingolipids associated with prion disease.

FDCs themselves express high levels of PrPC and are able to retain 
antigens for relatively long periods of time, including replicating PrPSc, 
making them good cell candidates for the identifi cation of biomarkers. 
However, FDCs make up less than 1% of the total cells within the spleen 
or lymph node which likely means that most disease associated expression 
changes are masked when looking at whole tissues. They are also tightly 
associated with other cell types, especially B cells, which along with the 
gap in knowledge regarding their lineage and molecular characteristics 
make them diffi cult to isolate for independent analysis. One study, how-
ever, has shown an increase in clusterin expression in association with 
abnormal PrP accumulation expression on FDCs during TSE disease, par-
ticularly human vCJD cases [60].

Lymph fl uid passes through lymph nodes and contains a mixture 
of proteins and antigens picked up from the interstitial tissues which it 
drains; it therefore refl ects changes associated with any immunoinfl am-
matory response within the node itself. The protein composition therefore 
emulates that of blood as well as being highly refl ective of the host re-
sponse to mucosal challenge. Given the route of transmission of acquired 
prion infections following ingestion and the subsequent preclinical repli-
cation in lymph nodes, lymph fl uid may be an excellent, as yet untested 
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source, from which biomarkers that accompany preclinical prion disease 
progression can be identifi ed. In the human genetic and sporadic forms of 
prion diseases, the disease occurs spontaneously within brain tissue and 
there is no preliminary involvement of peripheral tissues, and so FDCs 
and macrophages do not play a role in disease pathogenesis. Indeed PrPSc 
is most often absent in the lymphoid tissues, although, secondary infection 
of lymph nodes can occur in some instances, as recent studies show that 
PrPSc can be detected in spleens of patients with sCJD [61]. Biomarkers 
specifi cally expressed in lymphoid tissue or FDCs would therefore be use-
ful for the detection of TSEs acquired specifi cally by peripheral exposure.

9.3.2 BIOMARKERS IN CSF

Following neuroinvasion and establishment of prion disease in the brain of 
transmitted TSEs and following the onset of sporadic or genetic forms of 
disease, the CSF has been the tissue of choice for diagnosis and biomarker 
identification, due to its obvious association with the CNS and the fact that 
it is somewhat more accessible than CNS tissue itself. CSF is ideal for use 
in protein and gene expression profiling techniques to identify biomark-
ers both to track progression of neurodegeneration, as well as having the 
potential to contain biomarkers specific to prion replication.

Studies using 2D gel electrophoresis to profi le proteins in CSF have 
the longest history in biomarker identifi cation for CJD. A number of stud-
ies have identifi ed cystatin C, transferrin, ubiquitin, Apoliprotein J, lactate 
dehydrogenase, 14-3-3 proteins plus other as yet unidentifi ed polypeptides 
as potential biomarkers [43, 62, 63]. In addition a study employing SEL-
DI-TOF analysis of CSF revealed a 13.4 KDa protein. Further analysis 
using cationic exchange chromatography, sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE), and liquid chromatography-
tandem mass spectrometry (LC-MS/MS) revealed this protein to be cys-
tatin C. Immunoblotting confi rmed the signifi cantly increased abundance 
of cystatin C in all eight CJD-affected patients included in this preliminary 
study [64]. Interestingly many, if not all, of the genes mentioned above 
have also been identifi ed as differentially expressed in brain tissue of ro-
dents infected with prions. A study by Brown et al. also links the levels of 



differentially expressed genes to protein levels in the CSF, an observation 
that suggests that candidate gene panels identifi ed from animal studies 
could be used for prediction of disease-associated CSF biomarkers [30, 
65–67]. The detection of biomarkers in the CSF appears promising; how-
ever, all of the above-mentioned proteins have been observed to increase 
in abundance in the brains and/or CSF in other neurodegenerative condi-
tions such as Alzheimer’s disease or in traumatic brain injury. This fi nd-
ing suggests that the proteins identifi ed to date are not specifi c markers 
for prion disease but general biomarkers of neurodegeneration disease or 
trauma. However, the use patterns of expression of panels of these markers 
may confer specifi city, or alternatively, these markers could well be used 
as useful indicators of disease progression.

Recently, a proof of principle study revealed that the combination of 
MALDI-FTMS, in addition to machine learning for the classifi cation of 
mass spectral features, is able to identify preclinical protein signatures 
from the CSF of prion infected animals with reasonable predicative accu-
racy [68]. In this study CSF was isolated from 21 infected and 22 control 
hamsters at a time-point when approximately 80% of the expected incuba-
tion period had been completed. CSF was isolated and subjected to trypsin 
digestion without further fractionation and subjected to MALDI-FTMS, a 
methodology described earlier in the chapter. Peptide profi les were identi-
fi ed and the peaks compared using IonSpec peak picking software; a num-
ber of peptide peaks exhibiting differential abundances were identifi ed. It 
was reported that these peaks were amongst the least abundant peptides 
detected in the study, highlighting the need for improved methodologies to 
target low abundance proteins and peptides in biomarker studies. A linear 
support vector machines (SVM) and 10-fold leave-one-out cross valida-
tion was used to evaluate the predictive accuracy of the peptide peaks 
showing the greatest differences in abundance between infected and non-
infected hamsters. The predictive accuracy was determined to be 72%; 
true positive rate of 73% and false positive rate of 27% using a 10-fold 
leave-one-out cross validation demonstrated a potential for the use of pro-
teomic profi ling of CSF for the identifi cation of multiple biomarkers with 
diagnostic value. However, the identity of these peptides was not resolved 
in this study. Although specifi city was fairly low, as mentioned by Herbst 
et al. a disease-specifi c protein signature clearly exists in the CSF. This 
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type of approach combined with a prefractionation step to improve the 
accuracy of biomarker detection in the range of low abundance proteins 
could well result in identifi cation of a panel of markers with diagnostic 
potential. In this case the small size of hamsters and small volumes of CSF 
precludes this approach so larger animal models or human samples would 
be required. The comparison of protein profi les with other forms of neu-
rodegenerative disorders would be the next step in increasing specifi city 
to prion diseases.

9.3.3 BIOMARKERS IN BLOOD

Blood is the ideal reservoir for markers indicative of the progression of 
disease processes in the body, samples are easy to obtain and noninvasive 
to the patient, and as it circulates throughout the whole body, is a reposi-
tory for biomarkers of general health and disease. Although no secondary 
transmission of the sporadic or genetic forms of CJD has been reported, 
secondary transmission of vCJD from “human-to-human” can occur via 
blood transfusion. The infectious agent itself is present in the blood in this 
instance probably following replication in peripheral lymphoid tissue. An 
in vitro test to detect vCJD prion contamination in human blood or blood 
products is therefore one of the priorities for the development of sensitive 
and specific tests. Diagnostic signatures of BSE have been identified in 
serum of infected cattle by multivariate analysis of infrared spectra, at a 
sensitivity of 85% and a specificity of 90%, strongly supporting the hy-
pothesis that infection with prion agents leads to specific changes in the 
molecular content of serum [69]. However, no predictive tests for CJD or 
other prion disease have yet been validated in blood, including detection 
of the prion specific biomarker PrPSc.

A number of studies have identifi ed differential abundances of a hand-
ful of proteins in the blood of patients with CJD. One study has shown an 
increase of the S-100 protein and another, an increase in cystatin C [70]. 
Another recent study found elevated levels of heart fatty acid binding pro-
tein (H-FABP) in the serum of patients with CJD [42]. Fatty acid binding 
proteins are located within the cell and are responsible for the shuttling of 
fatty acids in the cytosol and are released from the cell in response to cell 



damage [42]. However, again, high levels of this protein have also been 
observed in acute myocardial infarctions, in stroke patients, and Alzheim-
er’s patients, implying that this is not a specifi c prion disease biomarker.

An early genomics study using differential display reverse-transcrip-
tase PCR (DDRT-PCR) to determine differentially expressed genes in 
blood identifi ed lower levels of the erythroid differentiation-related factor 
(ERAF) in the spleen, bone marrow and blood of scrapie infected mice 
[71]. The same group also observed differential expression of other ery-
throid-related genes (KEL, GYPA) in the spleens of infected mice as a 
common feature of murine scrapie [72]. However, these genes were found 
to be expressed at highly variable levels between individuals, thus pre-
cluding their usefulness as accurate markers for diagnosis.

Blood (serum and plasma) is one of the most diffi cult tissues to analyse 
using omic technologies. Blood is a highly complex tissue that displays 
a huge dynamic range of protein abundances challenging the identifi ca-
tion of the less abundant species; these rare proteins and peptides likely 
include the majority of disease specifi c biomarkers. Prefractionation steps 
are absolutely necessary to deplete the most abundant proteins [73]. The 
most common of these are immunodepletion, used extensively for the spe-
cifi c removal of high abundance proteins, based on the action of specifi c 
antibodies. More recently, saturation protein binding to a random peptide 
library has been proposed as an alternative method [38]. Not surprisingly, 
given these diffi culties and the scarcity of samples from CJD patients and 
large animal models, no proteomic screens for biomarkers of prion disease 
have been reported to date. Protein profi ling of plasma has been reported 
in a number of studies of Alzheimer’s disease and these show some suc-
cess as evidenced by cross-study reproducibility and validation (albeit 
fairly low sensitivity and specifi city) in patient cohorts. In one study, mass 
spectrometric analysis of the changes observed in two-dimensional elec-
trophoresis from the plasma of 50 Alzheimers patients and 50 matched 
controls identifi ed a number of proteins previously implicated in the dis-
ease pathology. These included complement factor H (CFH) precursor and 
alpha-2-macroglobulin (alpha-2M). Although the specifi city and sensitiv-
ity was fairly low, elevation of CFH and alpha-2M was shown to be specif-
ic for Alzheimer's disease and to correlate with disease severity [38]. Two 
other studies also identifi ed these proteins as upregulated in the plasma of 
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Alzhiemers patients; given that prion diseases have similar aetiologies it 
is likely that plasma may well be a rich source for biomarkers to monitor 
disease progression, and potentially for use in diagnosis [34, 35, 74].

Blood contains a number of circulating cells such as lymphocytes, 
macrophages, dendritic cells and platelets. Another approach in the search 
for biomarkers is to isolate specifi c cell populations and use these as a 
basis for gene or protein profi ling studies. Targeting cells that may be in-
volved in prion replication may increase the chance of picking up disease 
specifi c changes; however, no such studies have yet been done. Circulat-
ing immune cells such as macrophages and dendritic cells can carry in-
fectious PrPSc and may therefore traffi c infectious prion agent around the 
body. Macrophages have been found to contain PrPSc even in the absence 
of FDCs, thus leading to the speculation that they might serve as alterna-
tive sites of prion accumulation and replication when there are no func-
tional FDCs [56]. Dendritic cells are also mobile cells that can retain en-
docytosed particles without degradation for long periods of time, therefore 
ideal candidates for propagating prion proteins throughout the body [75].

Activation of the innate immune system in the brain is a general re-
sponse during neurodegeneration, including that induced by prions. Stud-
ies have identifi ed infl ammatory genes that are signifi cantly induced or 
suppressed in microglia isolated from CJD infected brains and these may 
be a source for potential candidate markers. In one study the CJD expres-
sion profi le obtained contrasted with that of uninfected microglia exposed 
to prototypic infl ammatory stimuli such as lipopolysaccharide and IFN-
gamma, as well as PrP amyloid. Transcript profi les unique for microglia 
and other myeloid cells involved in neurodegeneration provide opportuni-
ties for the discovery of disease specfi c biomarkers [19]. A second study 
also describes the expression of a number of potentially neuroprotecive 
genes in macrophages/microglia from CJD infected patients [76]. The se-
rum levels of immunomarkers may refl ect the infl ammatory process in 
the brain so that monitoring the levels of a panel of these in the serum 
of infected individuals may track the progress of the neurodegenerative 
process in patients. Whether or not the infl ammatory process is refl ected 
in the serum in prion diseases has not been investigated and is an area for 
further work. However, a number of studies in other diseases support this 
possibility including the identifi cation of upregulated neuroinfl ammatory 



markers in the blood of Parkinson’s affected individuals [34, 35] and a 
study by Ray et al to identify plasma biomarkers of Alzheimer’s disease 
using antibody arrays [48]. These arrays were used to identify 18 plasma 
protein biomarkers that one able to discriminate Alzheimer’s disease with 
90% accuracy, the majority of which were immune related cytokines and 
growth factors.

9.3.4 BIOMARKERS IN URINE

Urine is commonly used for diagnostic testing in many different conditions 
and being somewhat less complex than serum is amenable to exploratory 
biomarker analysis. Two recent studies have applied proteomics for the 
identification of prion-induced biomarkers. In the first study, the urine of 
infected cattle over the time course of disease was examined using a com-
bination of 2D-DIGE and mass spectrometry analysis [37]. Four classifier 
proteins were identified, two of these proteins, immunoglobulin Gamma-2 
chain C region and clusterin significantly increased in abundance over 
time. Increase in the abundance of immunoglobulins has also been re-
ported previously in the urine of scrapie-infected hamsters [77]. Levels 
of an isoform of clusterin were found to predict with 100% accuracy dur-
ing infection with BSE, however, the study size was extremely small and 
limited to a single sample group and so requires validation. Clusterin is a 
multifunctional glycoprotein found ubiquitously expressed throughout the 
body and is abundant in astrocytes, CSF, and blood plasma [39, 78]. Its 
expression has been found to increase in the brains of prion infected mice 
as well as in other neurodegenerative diseases, and on insult to the brain. 
A recently reported identified clusterin as a blood borne biomarker fol-
lowing plasma profiling in Huntington’s disease patients and additionally 
saw its upregulation in the CSF of affected individuals [79]. These studies 
suggest clusterin could have general utility as an inflammatory associated 
marker for multiple conditions including neurodegeneration.

In the second study, urinary alpha1-antichymotrypsin was found to 
be dramatically increased in urine of patients suffering from sporadic 
Creutzfeldt-Jakob disease and a number of other animal models of prion 
disease [36]. Alpha1-antichymotrypsin, like clusterin, has been identifi ed 
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as a potential disease marker in many disparate diseases including the re-
sponse to renal and other injuries, and deregulation of expression in many 
cancers and is therefore not specifi c to TSEs. It is likely that as both clus-
terin and alpha1-antichymotrypsin levels are highly responsive to multiple 
diseases and trauma that the levels in a normal population would preclude 
utility as a diagnostic marker. However, as levels of both clusterin and al-
pha1-antichymotrypsin were reported to increase incrementally during the 
course of disease, this type of marker could potentially be used to monitor 
the progress of degeneration in individuals during treatment.

9.3.5 EXOSOMES

Exosomes have been investigated for their value as “repositories” for 
biomarker detection. Exosomes are small (50–90 nm) microvesicles that 
originate in the cell and following release are thought to be able to migrate 
and interact with or on other cells [80]. They are often released by cells un-
dergoing stress or other stimuli and may therefore act as carriers of poten-
tial biomarkers. Additionally, exosomes are easily isolated from multiple 
biological fluids and have a much less complex protein component than 
whole blood, serum, CSF or urine; during the formation of intraluminal 
vesicles in exosomes extensive sorting of proteins and lipids occurs at the 
membrane of endosomes which results in them containing a specific group 
of proteins [80]. Recently the presence of both PrPC [81] and PrPSc [82] 
on exosomes has been demonstrated. In prion infection, exosomes may 
be ideal candidates for biomarker discovery as they have been reported 
to be released from several cell types that are involved in prion infection, 
including intestinal epithelial cells, neurons, neuroglial cells, and DCs.

PrPSc is associated with exosomes from neuroglial and epithelial cells 
and these may provide a means of cell-to-cell transfer of infectious prions 
[82]. FDCs which are actively involved in peripheral prion replication re-
lease signifi cant numbers of exosomes on stimulation and it is possible 
that these are involved in the extracellular transport of PrPSc to nerve end-
ings, although the mechanism by which prions travel from FDCs to the 
nervous system is presently unknown. It has, however, been shown that 
the topographical location between FDCs and nerve endings plays a key 



role in determining the effi ciency of neuroinvasion; the process is accel-
erated when FDCs are in closer contact with the nerve endings [83]. As 
exosomes in human plasma may have a multitude of cellular origins in-
cluding release from human platelets, epithelial cells and hemopoetic cells 
such as mast cells we believe they could be both a source of biomarkers 
for early detection of PrPSc in peripheral infection or for the identifi ca-
tion of biomarkers specifi c to prion replication. Alternatively, they may 
be reservoirs of infl ammation- or stress-related biomarkers that could be 
detected in plasma, CSF or urine. Although these avenues have yet to be 
explored in prion diseases, other studies to identify exosomal biomark-
ers provide proof-of-principle, such as the identifi cation of Fetuin-A as a 
potential biomarker from urine in patients with acute kidney injuries and 
glioblastoma [84, 85].

9.4 FUTURE PERSPECTIVES IN PRION BIOMARKER RESEARCH

Techniques for protein profiling are rapidly evolving as are techniques 
for rapid genome scale sequencing for gene expression profiling. Other 
novel methodologies can be applied to the fractionation and isolation of 
pertinent cell types from which to isolate more specific markers of prion 
disease and neurodegenerative processes. One technique that shows prom-
ise in this regard is laser-capture microdissection (LCM) capable of isolat-
ing individual cells from cut tissue sections, thus allowing identification 
of RNA and protein changes specifically in prion-replicating cells. These 
biomarkers may well be too scarce to pick up on examination of whole 
tissues or body fluids. It is a useful tool for either markers of peripheral 
infection in cells from the spleen, gut mucosa, and lymphoid tissue such 
as tonsils, or to identify prion-replication associated markers, or neuronal 
health related markers in brain tissues which may well translate to markers 
in CSF or blood. So far LCM biomarker research on prion diseases and 
other neurodegenerative disorders is in its infancy but is a promising area 
for future research.

A burgeoning area for biomarker research is the identifi cation of dys-
regulated small noncoding RNAs, especially the recently identifi ed fam-
ily of microRNAs (miRNAs) which are involved in post-transcription-
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al regulation of gene expression in both plants and animals [86]. These 
short RNAs have been determined to have regulatory roles that are vital 
to many cellular processes and appear to be particularly active in control-
ling complex functions in the nervous system such as neurodevelopment 
and neuronal function. Recently, compelling evidence for the involve-
ment of microRNAs (miRNAs) in neurodegenerative diseases including 
Alzheimer’s, Parkinson’s and prion diseases, has been published [87–89]. 
Indeed two miRNAs exhibiting increased expression in the brains of ro-
dent models of scrapie were similarly upregulated in the brains of BSE 
infected macaques illustrating the potential for consistency across species 
[90]. The potential of miRNAs as biomarkers for diagnosis and prognosis 
has also been endorsed by studies showing that expression of miRNAs in 
various cancers can be highly specifi c and discriminatory profi les between 
diseased and non-diseased tissues can be readily identifi ed [91].

9.5 CONCLUSION

Significant advances in recent years in technologies for high-throughput 
sequencing and proteomics mean that the future is bright for biomarker 
discovery in relation to prion diseases. Of particular note are the ability 
to obtain transcriptional profiles from homogeneous cell populations at 
different stages of disease, advances in prefractionation methods for pro-
teomic studies, and the possibility of high-throughput proteomics to iden-
tify ever increasing numbers of individual proteins from a single sample. 
However, a number of unique hurdles and pitfalls remain in relation to 
prion diseases; these include the very small number of clinical cases for 
validatory studies, the long incubation period, and the variability of patho-
genesis between strains and routes of infection. It is this heterogeneity 
among prion disease phenotypes that requires careful choice of tissues 
and time points to use as starting materials for biomarker discovery. Given 
these factors it may well be impossible to, for example, identify a single 
preclinical biomarker congruent to the diagnosis of all prion diseases. 
Conversely, similarities between molecular mechanisms leading to dam-
age and death of neurons in multiple degenerative conditions may allow 
the broad utility of biomarkers to track disease progression or to predict 



the onset of disease between prion and other neurodegenerative condi-
tions. Another factor of note that contributes to the relatively slow prog-
ress of research in this area relates to the physical properties of the agent 
itself. The resistance of prions to conventional chemical and physical pro-
cedures designed to inactivate viruses and bacteria means that infected tis-
sues must be analysed under biocontainment conditions. Analysis equip-
ment must in many instances be dedicated to TSE biomarker discovery 
following contamination with potentially infectious prions. These issues 
often preclude the use of the most up-to-date techniques that rely on ex-
pensive, often core-facility-based, apparatus.
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CHAPTER 10

This chapter was originally published under the Creative Commons Attribution License. Wilson DJ. In-
sights from Genomics into Bacterial Pathogen Populations. PLoS Pathogens 8,9 (2012). doi:10.1371/
journal.ppat.1002874.

INSIGHTS FROM GENOMICS 
INTO BACTERIAL PATHOGEN 
POPULATIONS

DANIEL J. WILSON

10.1 INTRODUCTION

Bacteria are the most abundant group of organisms, and a major source 
of human disease and mortality. Bacterial cells account for most of the 
earth's biomass [1], and the 100 trillion microbial residents of the human 
body outnumber human cells 10 to 1 [2]. Bacteria that cause pneumonia, 
diarrhea, and tuberculosis are leading causes of death worldwide [3], [4]. 
In countries with a low overall burden of infectious disease such as the 
United States, bacteria are nevertheless responsible for more than 60% of 
the deaths attributable to communicable disease, with hospital-associated 
infections, HIV-associated infections, and tuberculosis most prominent 
(Table 1).



Since the introduction of the earliest antibiotics, bacteria have evolved 
resistance [5]. Treatment options continue to be eroded by the spread of 
antibiotic resistance [6], not only in countries with advanced health care 
infrastructure, but globally [7], [8]. However, advances in DNA sequenc-
ing capacity offer hope in the fi ght against pathogenic bacteria because the 
ability to sequence populations of bacterial genomes is illuminating our 
understanding of bacterial evolution and virulence. Ultimately these in-
sights will underpin translational research into improved medical practice, 
drug and vaccine targets, and public health policy.

High-throughput whole genome sequencing (Figure 1) represents a 
genuine step change for the study of bacterial populations because cur-
rent approaches are based on the analysis of gene fragments amounting to 
just a few thousandths the total length of the genome [9], [10]. Population 
genomics offers unprecedented sensitivity for the detection of rare genetic 
variants, vastly improved resolution for population studies, and direct se-
quencing of functionally relevant loci. As a result, it is driving new under-
standing of within-host evolution, transmission, and population structure. 
Moreover, the advent of rapid benchtop sequencing is changing the way 
that microbiology is conducted, signaling a new era of real-time genomics 
and disseminated collaborative analysis in response to rapidly changing 
public health emergencies.

TABLE 1: Major bacterial causes of death: World and United States.

Cause of Death Total Deaths 
(Thosands)

% Communi-
cable Disease 
Deaths

Key Bacterial Species

Global (2008 estimates) [3, 83]

Lower respiratory infections 3,742 30.6 Streptococcus pneumoniae, 
Haemophilus influenzae

Tuberculosis 1,833 15.0 Mycobacterium tuberculosis

   Directly attributable 1,250 10.2

   HIV-associateda 583 4.8

Diarrhoeal disease 1,687 13.8 Vibrio cholerae, Escherichia 
coli, Salmonella typhi
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Cause of Death Total Deaths 
(Thosands)

% Communi-
cable Disease 
Deaths

Key Bacterial Species

Meningitis 270 2.2 Neisseria meningitidis

Pertussis 194 1.6 Bordella pertussis

Tetanus 128 1.0 Clostridium tetani

Syphilis 81 0.7 Treponema pallidum

Upper repiratory infections 69 0.6 Streptococcus pyogenes

Chlamydia 7 0.1 Chlamydia trachomatis

Other communicable diseaseb 4,231 34.5

United States of America (1999–2007) [84]

Sepsisb 280.3 48.17

Clostridium difficile infection 30.2 5.19 Clostridium difficile

Staphylococcal infection 16.6 2.86 Staphylococcus aureus

HIV-associatedb 9.7 1.66

Tuberculosis 8.8 1.50 Mycobacterium tuberculosis

   Directly attributable 7.4 1.26

   HIV-assoicated 1.4 0.24

Streptococcal infection 6.4 1.09 Streptococcus pneumoniae

Meningococcal disease 1.4 0.24 Neisserie meningitidis

Legionnaires' disease 0.7 0.12 Legionella pneumophila

Other bacterial diseaseb 17.6 4.57

Other communicable disease b 210.1 36.1

The total number of deaths attributable to communicable diseases is shown for the world 
(2008 estimates) and United States (1999–2007), with key bacterial species highlighted. 
At the global level, the WHO classifications for causes of death are broad and usually 
encompass multiple etiological agents, not only bacterial species. The United States 
and some other countries classify deaths based on detailed ICD-10 four-digit codes that 
frequently specify the bacterial species responsible.
aEstimated from the total number of HIV deaths assuming 26% are associated with 
tuberculosis [85].
bExcluding other causes of death mentioned explicitly.

TABLE 1: Cont.
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FIGURE 1: An example workflow for high-throughput whole genome sequencing in 
bacteria. Sample collection. A biological sample (e.g., blood) is collected. Culture. 
Bacterial colonies are isolated from the sample by culturing on appropriate media. DNA 
Preparation. DNA is extracted from the colonies and a DNA library is prepared ready for 
sequencing. High-Throughput Sequencing. Millions of short sequence reads are yielded, 
typically several hundred nucleotides long or less. To reconstruct the genome, one of 
two approaches is generally adopted. Mapping to Reference Genome. In reference-based 
mapping, the short sequences are mapped (i.e., aligned) to a reference genome using an 
algorithm (e.g., [73], [74]). Preferably the reference genome is high quality, complete, and 
closely related. The pie chart illustrates that not all reads necessarily map to the reference 
genome (e.g., because of novel regions not present in the reference). Filtering. Short reads 
cannot be mapped reliably to repetitive regions of the reference genome, so these are 
identified and filtered out. Sites that are problematic for other reasons (e.g., because too 
few reads have mapped or because the consensus nucleotide is ambiguous) are also filtered 
out. The pie chart illustrates that some portion of the reference genome does not get called 
due to filtering. In the mapped genome, these positions will receive an ambiguity code (i.e., 
N rather than A, C, G, or T). De novo Assembly of Contigs. An alternative to mapping is 
de novo assembly, in which no reference genome is used. An algorithm (e.g., [75], [76]) 
is used to assemble short reads into longer sequences known as contigs. The number and 
length of contigs will depend on general factors such as the length of sequence reads and 
the total amount of DNA sequence produced, as well as local factors such as the presence 
of repetitive regions. The pie chart shows an example of the proportion of all reads that 
assemble into contigs of a given length. Alignment. For further analysis, it is necessary 
to align local regions (e.g., genes) or whole genomes using appropriate algorithms (e.g., 
[77]–[79]). There is a trade-off in computational terms between the length of region and the 
number of sequences that can be aligned. Sequence Analysis. The two approaches produce 
sequence alignments that represent pairwise alignments against a reference (mapping) or 
multiple alignments one to another (de novo assembly). These alignments can be analyzed 
directly, or processed further to detect variants such as single nucleotide polymorphisms, 
insertions, and deletions. The pie charts are meant to be illustrative only, and were produced 
from data in [27].

10.2 WITHIN-HOST EVOLUTION

Successful colonization of a host is essential to the lifecycle of the patho-
gen, and the dynamics of the host-pathogen interaction determine the 
outcome of the interaction, including the severity of disease. DNA/RNA 
sequencing has greatly advanced the understanding of viral dynamics dur-
ing infection [11], [12], including the ability to predict disease progres-
sion [13], [14], but progress in bacteria has lagged behind, owing to much 



larger genomes and sparser genetic variation [15]. However, whole ge-
nome sequencing in populations of bacteria colonizing individual hosts is 
shedding new light on the host-pathogen interaction, and the dynamics of 
bacterial evolution within the host.

At the whole genome scale, genetic variation has been discovered in 
singly infected hosts colonized by species as disparate as Mycobacterium 
tuberculosis [16], Salmonella enterica [17], and Staphylococcus aureus 
[18]. The absolute number of variable sites detected in singly infected 
hosts is small, frequently fewer than 10 single nucleotide polymorphisms 
(SNPs), although this varies by species and depends on the number of 
genomes sequenced and the time elapsed between sampling. Other forms 
of genetic variation observable at the species level [19] have also been 
detected, including short insertions and deletions (indels), and variation in 
the presence or absence of mobile elements such as prophages [16]–[18].

The real-time mutation rate is a key factor in determining the potential 
for bacterial pathogens to adapt to the host immune system or drug inter-
vention. Traditional estimates of bacterial substitution rates over geologi-
cal timescales predict fewer than 0.01 mutations per megabase (Mb) per 
year [20], [21]. Yet laboratory estimates and limited sequencing of longi-
tudinal samples suggest rates 100 or 1,000 times faster [22]–[26]. These 
estimates have been put to the test by whole genome sequencing, yielding 
within-host mutation rates ranging from 0.1/Mb/year in Mycobacterium 
tuberculosis [16] through 2.7/Mb/year in Staphylococcus aureus [27] to 
19/Mb/year in Helicobacter pylori [28]. This supports the conclusion that 
short-term substitution rates in bacteria are several orders of magnitude 
faster than long-term rates [23], [26], a fi nding that may be explained by 
the delayed action of purifying selection [29], [30]. In other words, over 
longer evolutionary periods the substitution rate depends on selection as 
well as mutation. It also demonstrates the potential for bacteria to adapt 
within the host. For example, the discovery that the genome-wide mutation 
rate in latent tuberculosis infection is similar to that in active disease may 
explain reports that found treating even latent infections with the antibiotic 
isoniazid was a risk factor for the emergence of isoniazid resistance [16].

Many bacterial pathogens are common constituents of the body's natu-
ral fl ora [31]. Evolution during colonization may trigger a transition from 
healthy carriage to invasive disease. For example, 27% of adults carry 
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Staphylococcus aureus asymptomatically in the nose [32], a known risk 
factor for disease [33]. In a study of one long-term carrier who developed 
a bloodstream infection, the genomes of invasive bacteria were found to 
possess an excess of mutations that truncated proteins, including a tran-
scriptional regulator implicated in pathogenicity [27], [34]. Although fur-
ther work would be needed to establish causality, this demonstrates the po-
tential for loss-of-function mutations to induce radical functional change 
during colonization.

Unusual patterns of mutation in the genome during colonization may 
signal adaptive change and reveal mechanisms of virulence or immune eva-
sion. A study of a 16-year outbreak of chronic Burkholderia dolosa infec-
tion among cystic fi brosis patients revealed evidence for parallel adaptive 
evolution [35]. Seventeen genes accrued three or more mutations across the 
14 patients, of which a signifi cant excess altered the encoded protein. Some 
of these mutations affected important phenotypes, including oxygen-depen-
dent gene regulation—which may be pertinent to lung infection—antibiotic 
resistance, and outer membrane synthesis. Mutations not previously impli-
cated in pathogenesis present novel therapeutic targets.

In hosts colonized multiple times by distinct genotypes, whole genome 
sequencing affords an opportunity to investigate recombination in vivo. 
Horizontal gene transfer, also known as recombination, is a fundamental 
process that generates diversity and facilitates the spread of advantageous 
genes [36], [37]. A longitudinal study of the highly promiscuous gut patho-
gen Helicobacter pylori identifi ed recombination events from the cluster-
ing of SNP differences introduced by the import of DNA from one strain 
to another [28]. Surprisingly, multiple fragments of around 400 bases ap-
peared to be simultaneously imported in a span up to 20 kilobases long. 
This pattern of integration was implied by the results of a similar study in 
Streptococcus pneumoniae [38], demonstrating the power of whole ge-
nome sequencing to illuminate molecular mechanisms.

10.3 DETECTION OF TRANSMISSION EVENTS

Whole genome sequencing offers unprecedented resolution to distinguish 
degrees of relatedness among bacterial isolates, and this is a powerful tool 



for microbial forensics [39]. Genome sequencing complements existing 
epidemiological tools by providing a means to reconstruct recent chains 
of transmission, identify sequential acquisition of strains by persistent car-
riers, and identify cryptic outbreaks that might otherwise go unnoticed.

The superiority of genomics over traditional approaches to molecular ep-
idemiology was demonstrated in a study of Staphylococcus aureus ST-239 
[40], a widely disseminated multi-drug resistant clonal lineage dominant in 
much of Asia. Traditional typing methods offer little discriminatory power 
for subtyping ST-239, but 5,842 SNPs were discovered by whole genome 
sequencing, revealing detailed geographical structure within the lineage. 
Against this backdrop of geographical differentiation, examples of recent in-
tercontinental transmission were evident from the clustering of two isolates 
from England and Denmark among the Thai group. Moreover, a cluster of 
fi ve isolates sampled over 11 weeks from adjacent blocks of a Thai hospital 
differed by just 14 SNPs, providing evidence of recent hospital transmission.

Population genomics offers complementary tools to routine outbreak 
investigation. Following the discovery of two index cases, an outbreak 
of Mycobacterium tuberculosis was uncovered in British Columbia using 
contact tracing and social network questionnaires [41]. The transitivity of 
the social network and inability to distinguish isolates by traditional geno-
typing prevented identifi cation of the source. Whole genome sequencing 
revealed two distinct lineages, ruling out transmission between social con-
tacts infected with discordant types. Further epidemiological investigation 
intimated a complex scenario in which an increase in crack cocaine usage 
triggered simultaneous outbreaks that were sustained by key members of 
a high-risk social network.

In some cases, the direction of transmission may be discernible from 
patterns of relatedness and associated epidemiological information. In their 
study of chronic Burkholderia dolosa infection among cystic fi brosis pa-
tients [35], the authors used the chronological accumulation of mutations 
to discriminate donors from recipients in the transmission network. By the 
same method, they were even able to infer repeated transmission from the 
airways to the bloodstream within patients (Figure 2). In a persistent Esche-
richia coli infection of members of a household over three years [42], whole 
genome sequencing revealed at least six transmission events between family 
members including at least two zoonotic transmissions to the family dog.
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FIGURE 2: Whole genome sequencing reveals within-host evolution and recent 
transmission between patients. Lieberman, Michel, and colleagues [35] sequenced the 
genomes of 112 isolates of Burkholderia dolosa from 14 cystic fibrosis patients involved 
in an outbreak in Boston, Massachusetts in the 1990s. (A) The maximum likelihood 
tree relating the bacterial genomes, color-coded by patient, is broadly consistent with a 
single founding infection for each patient. (B) The date of sampling and the chronological 
accumulation of mutations implied a network of transmission events. (C) Interesting 
patterns emerged when comparing bacteria isolated from different sites in the same patient. 
For two patients (subjects K and N), multiple genotypes appeared to have been transmitted 
from the airways to the bloodstream during septicemia, either concurrently or over the 
course of the infection. By contrast, a single genotype appeared to have been transmitted 
from the airways to the bloodstream in subject H. Reproduced from [35] appearing in 
Nature Genetics (Volume 43, 2011).



Multiple transmission events resulting in serial acquisition by a sin-
gle host can be distinguished from persistent or relapsing infection using 
whole genome sequencing. This is useful in infections such as invasive 
nontyphoidal Salmonella, a common cause of severe and recurring blood-
stream infections among HIV-infected adults in Africa. A study of invasive 
nontyphoidal Salmonella in 14 Malawian patients discriminated recrudes-
cent (i.e., relapsing) infection from multiple infection on the basis of relat-
edness inferred from genome-wide SNP differences [17]. Recrudescence 
accounted for 78% of recurring infections, although recrudescence and 
multiple infection in the same patient was not uncommon.

10.4 HISTORICAL PATTERNS OF TRANSMISSION

In addition to revealing fine-grained genetic structure that is informative 
about recent transmission, genomics offers unrivalled precision for recon-
structing historical patterns of spread. With comprehensive sampling, we 
can identify the geographical and temporal origin of pandemics and the 
dominant transmission routes responsible for global dissemination. For 
example, a study of Yersinia pestis used genome sequencing to assist in 
the discovery of 933 SNPs subsequently typed in 286 global isolates [43]. 
Based on the diversity and juxtaposition of isolates close to the root of the 
tree, the authors concluded that the origin of plague more than 2,600 years 
ago occurred in or near China.

Understanding the circumstances under which epidemics emerge and 
take hold may help to manage contemporary threats and prevent future 
outbreaks. The history of the seventh and current pandemic of Vibrio chol-
erae was pieced together using population genomics [44]. An analysis of 
global isolates revealed three partially overlapping waves of pandemic 
cholera originating in the Bay of Bengal during the 1950s and leading 
to a succession of geographically restricted epidemics. Each wave was 
characterized by a particular armory of genetic elements including distinct 
forms of the cholera toxin and, from the second wave onwards, SXT/R391 
integrative and conjugative elements that confer antibiotic resistance.

Sequencing ancient bacteria is a particularly powerful tool for investi-
gating historical transmission. To reconstruct the history of leprosy, SNPs 
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discovered by whole genome sequencing were typed in over 400 iso-
lates of Mycobacterium leprae, including bacteria isolated from skeletal 
remains recovered from leprosy graveyards in and around Europe [45]. 
The paleomicrobiological samples resembled modern European isolates, 
supporting a model in which leprosy arose in East Africa before dispers-
ing east and west by traders along the Silk Road [46]. The provenance of 
Yersinia pestis was investigated by sequencing bacteria isolated from teeth 
disinterred from the East Smithfi eld burial ground for Black Death victims 
in London [47]. The reconstructed genome closely resembled the most 
recent common ancestor of modern plague in humans, suggesting that the 
Black Death was the main historical event antecedent to contemporary 
plague worldwide (Figure 3).

Zoonosis is a major source of emerging infectious disease, with wild-
life the most frequent origin [48]. In the United States, leprosy is rare and 
most infected individuals have a history of foreign residence. Yet a third 
of cases in Texas and Louisiana had no such explanation [49]. Genome 
sequencing and SNP typing revealed that a distinctive strain of leprosy 
was present in 33 wild armadillos and 26 of 29 unexplained human cases, 
strongly suggesting zoonotic transmission of Mycobacterium leprae from 
wild armadillos.

10.5 POPULATION STRUCTURE, CARRIAGE, AND DISEASE

Many bacterial pathogens cause diseases of varying severity, and some 
cause no disease at all most of the time (e.g., [32], [33]), constituting a 
normal part of the body flora [2], [31]. Such observations raise the ques-
tion of why bacteria cause disease and have led to the notion of the acci-
dental pathogen [50], [51]. Virulence may be accounted for by differences 
between strains and by the expression of genes encoding toxins, adhesins, 
and drug resistance, often carried by mobile elements (e.g., [52]–[56]). 
With whole genome sequencing, populations of virulent and avirulent bac-
teria can be compared to help explain disease from mechanistic and phy-
logenetic standpoints. Koch's postulates might be revised [57] to cover the 
discovery of associations between disease and individual genes or alleles, 
a process that is likely to accelerate rapidly in the 21st century. A fuller 
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understanding of bacterial population structure may also help predict the 
effects of interventions such as vaccination.

Bacteria of the same species isolated from patients with different clini-
cal presentations can be compared directly by whole genome sequencing. 
Streptococcus pyogenes, also known as Group A Streptococcus, causes 
benign pharyngitis and invasive disease including scarlet fever. A com-
parison of around 300 isolates from Ontario indicated that invasive bac-
teria do not form genetically distinct populations. Rather, closely related 
bacteria may be invasive or pharyngitis-associated, demonstrating that the 
ability to cause invasive disease is not restricted to specifi c strains [58], 
[59]. Evidence for adaptation in genes involved in capsule synthesis and 
virulence regulation supported a model in which mutation in vivo plays an 
important role in progression to invasive disease.

Reconstructing the relationships between strains with different clini-
cal manifestations can reveal the evolutionary origins of disease. A study 
of disparate Clostridium diffi cile isolates including representative mem-
bers of the hypervirulent lineages denoted ribotypes 017, 027, and 078 
found they were descended from multiple ancestors in the species tree, 
consistent with a scenario in which virulence evolved several times during 
evolution [60]. Whole genome sequencing afforded improved clarity for 
reconstructing the genealogy of Chlamydia trachomatis and appeared to 
show that strains causing trachoma, an eye infection, were evolutionarily 
descended from an ancestor causing urogenital disease [61].

The iatrogenic effect of public health intervention on bacterial patho-
gen populations, such as the introduction of a novel vaccine or the with-
drawal of an antibiotic from agricultural use, is of major importance. Vac-
cine escape in Streptococcus pneumoniae has been a concern since the 
introduction of the heptavalent conjugate polysaccharide vaccine PCV7 
in 2000 as it protects against many, but not all, serotypes. Two genomic 
studies found evidence for capsular switching, in which hybrid strains nor-
mally covered by the vaccine but expressing non-vaccine serotypes arise 
through recombination [62], [63]. One such strain has quickly established 
in the United States, spreading westwards from New England [63].



10.6 REAL-TIME PATHOGEN GENOMICS

The relentless demand for higher throughput, lower cost DNA sequenc-
ing has spurred dramatic advances in the capacity and rapidity of whole 
genome sequencing. Benchtop sequencers permit real-time applications 
of genomics by sequencing small batches of bacteria in a matter of hours. 
The outbreak of cholera on the island of Haiti in October 2010 provided 
an early example of the potential for real-time genomics [64]. In the wake 
of the devastating earthquakes of January 2010 that killed 230,000 people, 
two million residents were displaced from their homes. Cases were first 
reported on October 19. By July 2011, 419,511 cases and 5,968 deaths had 
been reported [65]. Initial investigation found many patients had drunk un-
treated river water. By November 1, 2010 culturing and PFGE confirmed 
the pathogen as Vibrio cholerae of probable South Asia origin [66]. First-
round whole genome sequencing of Haitian isolates began on November 
10 and completed within 2 days [64]. Genomic analysis showed they were 
essentially identical, but distinct from other cholera circulating in Latin 
America, instead resembling widely circulating Asia strains [64], a finding 
that was consistent with possible introduction by United Nations Peace-
keeping troops dispatched from Nepal following the earthquakes [65].

Real-time genomics may prove particularly valuable in outbreaks in-
volving newly emerged strains. However, processing genomic data in real 
time poses considerable analytical challenges. In the May 2011 outbreak 
of Escherichia coli in Germany, a novel crowd-sourcing experiment was 
trialed that foretells of the potential of real-time genomics to radically alter 
the way outbreaks are investigated [67]. The large outbreak was unusual 
in several aspects: high incidence in adults, greatly increased incidence 
of hemolytic-uremic syndrome, a preponderance of female patients, and 
a rare, Shiga toxin-producing serotype not previously linked to outbreaks 
[67], [68]. A fi rst draft of the genome of an isolate sampled on May 17 was 
completed within 3 days, then released into the public domain, eliciting 
curiosity-driven analysis by scientists on four continents [67]. Within a 
week two dozen reports had been fi led on a dedicated open-source wiki. 
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Analysis of this and other strains concluded that the outbreak was caused 
by the acquisition of a Shiga toxin-encoding prophage and a plasmid bear-
ing an extended-spectrum beta-lactamase gene by an ancestral enteroag-
gregative strain [67], [68]. The striking virulence of the hybrid may be 
connected to the atypical presence of three SPATE genes, which are impli-
cated in mucosal damage and intestinal colonization [68].

Two studies from hospitals in the United Kingdom have demonstrated 
the practical advantages of real-time whole genome sequencing as part 
of routine outbreak investigation and surveillance. Focusing on the most 
serious health-care-associated pathogens, C. diffi cile [69] and S. aureus 
[69], [70], bacterial samples were isolated from suspected outbreaks in 
four hospitals. The genomes were sequenced and analyzed within 5 work-
ing days of culture, confi rming the suspected outbreaks of MRSA (meth-
icillin-resistant S. aureus), but demonstrating that the epidemiologically 
linked cases of C. diffi cile infection were in fact genetically distinct. Char-
acterization of the repertoire of resistance and toxin genes provided further 
information relevant to patient management.

10.7 SUMMARY AND PERSPECTIVES

In the future, population genomics will be central to an improved un-
derstanding of the epidemiology, etiology, and evolution of bacterial in-
fectious diseases. However, there are obstacles yet to overcome. Pilot 
studies have demonstrated the potential genomics has for epidemiologi-
cal investigation [40], [41], [64], [67]–[70], but creative solutions to the 
problem of integrating complex epidemiological and genomic data are 
now required. Currently, genome sequencing relies on culture to yield 
sufficient bacterial DNA and new technologies are needed to overcome 
this dependency. If the cost of DNA library preparation can be substan-
tially reduced, genomics will come within reach of public health authori-
ties as a tool for routine surveillance. These and other future challenges 
are discussed in Box 1.



BOX 1: FUTURE CHALLENGES FOR PATHOGEN WHOLE 
GENOME SEQUENCING

High-throughput whole genome sequencing has been demon-
strated to be a practical tool for epidemiological and evolution-
ary investigation of bacterial pathogens, yet the current technol-
ogy has certain limitations. The challenge for future advances in 
sequencing technology is to overcome these problems.

• Culture. Reliably sequencing the genomes of individual bacteria re-
quires culture to obtain sufficient quantities of concentrated DNA. 
This takes time and effort, restricts the approach to culturable or-
ganisms, and may introduce artifacts such as in vitro mutation and 
laboratory cross-contamination. Direct sequencing without culture 
(e.g., [81]) may in the future relinquish this dependency on culture, 
but metagenomics approaches present additional challenges for bio-
informatics and sequence analysis (see, e.g., [82]).

• Library preparation. Exponential increases in the capacity of high-
throughput sequencers show no sign of abating. In principle, this 
should allow the cost of bacterial whole genome sequencing to con-
tinue to fall. However, the price per genome also depends on the cost 
of DNA library preparation, comprising both consumables and labor. 
Advances in automation and throughput will be required to prevent 
library preparation becoming a bottleneck, and to reduce the cost 
sufficiently that bacterial genome sequencing becomes affordable 
for routine surveillance.

• Bioinformatics. The development of bespoke bioinformatics pipe-
lines for bacterial whole genome sequencing represents a consider-
able investment and a complex set of choices from among the many 
computational methods on offer. Some degree of normalization is 
required to ease the burden on users of whole genome sequencing, 
for example hospital microbiology laboratories, and to promote stan-
dardized and replicable workflows.
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• Platforms. High-throughput sequencing technologies yield large 
quantities of short read sequences but with substantially elevated er-
ror rates, compared to conventional capillary sequencing. The details 
of sequence length and error profile differ in important ways between 
platforms. In consequence, different results may be obtained when 
the same sample is sequenced on different platforms. Improved un-
derstanding of the error profiles of different architectures combined 
with efforts towards quantifying uncertainty in the DNA sequences 
generated will help minimize discrepancies of this kind.

• Genome assembly. De novo assembly is used to join together the 
short reads of DNA generated by the sequencing machines into lon-
ger genome fragments, known as contigs. The ultimate goal is to join 
all the fragments into a single contig representing the whole bacte-
rial chromosome, known as a closed genome. However, variation in 
the number of reads sequenced from each part of the genome (the 
depth of coverage), and the existence of repetitive regions, conspire 
to prevent this. With longer reads, it should be possible to overcome 
these problems.

• Public databases. To accelerate the pace of discovery and assist col-
laboration between laboratories, well-organized publicly available 
databases are required from which bacterial genomes are readily 
downloaded in convenient formats. Raw data are currently available 
in short read archives (e.g., http://www.ncbi.nlm.nih.gov/sra and 
http://www.ebi.ac.uk/ena), but with standardization of bioinformat-
ics processing it should become possible to provide pre-processed 
data which would dramatically reduce the workload for database 
users.

BOX 1: CONT.



Improved understanding of disease etiology helps to direct research 
into therapies. Genomics is a promising tool for investigating the differ-
ences between invasive and non-invasive bacteria at the population and 
within-host levels [27], [59]–[61]. Tools from human genetics may help in 
this endeavor. Even so, investigations into bacterial population structure 
are required to assess the feasibility of genome-wide association studies 
[71]. Understanding the architecture of traits such as virulence would ben-
efi t from the development of high-throughput phenotyping assays. RNA 
sequencing is one such candidate [72], but differences in gene expression 
in culture and in vivo are a potential impediment to progress.

Population genomics also promises to improve our understanding of 
bacterial pathogen evolution. The resolution of whole genome sequencing 
allows precise calibration of evolutionary rates from longitudinal samples 
within populations and individual hosts [16]–[18], [28], [35], [40], [47]. 
This permits the origin of new species to be dated, but the discrepancy 
between short- and long-term rates requires further explanation [23], [30]. 
Investigating within-host dynamics will help identify the evolutionary 
mechanisms involved in disease progression [27], [35]. Sequencing popu-
lations of pathogens will reveal the prevalence of virulence factors and 
drug resistance, and the role of mobile elements in their spread [44]. Ulti-
mately, however, we must pinpoint the evolutionary advantages that bac-
teria gain from infl icting illnesses if we are to fully understand the causes 
of bacterial disease.
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11.1 INTRODUCTION

The recent availability of new generation sequencing technologies [1], [2] 
has provided unprecedented sequencing capacity, enabling the acquisition 
of genome-scale sequences at an extraordinary fast rate. These innovative 
techniques provide amazing opportunities for high-throughput structural 
and functional genomic researches and have been applied to date to a va-
riety of contexts such as whole-genome sequencing [3] and resequenc-
ing [4], targeted resequencing [5], non coding RNA [6] or DNA-binding 
of modified histones [7], [8]. These high-throughput sequencing methods 
avoid the need for in vivo cloning and achieve a high accuracy. Even ho-
mopolymer problems, i.e. the major drawback of 454 pyrosequencing, 



may be overcome by reaching high sequence coverage [1]. These new 
technologies greatly reduce the work, time and expenses of such projects.

However, the relative short read length makes genome assembly prob-
lematic and their use in bacterial genomics has been fairly restricted to 
new strains closely related to already sequenced organisms to identify for 
example virulence factors [9], antibiotic resistance genes [10], or epide-
miological markers [11]. Although improved techniques can now achieve 
paired-read information and longer reads [12], genomes still need a costly 
and time-consuming gap closure step, especially when containing highly 
repetitive elements such as transposases and recombination hot spots.

Still, complete genomic information is not necessarily needed and in-
complete genome data obtained using high-throughput sequencing meth-
ods may potentially be informative enough to derive the pursued infor-
mation. Moreover, the low time to results of such approaches (about 15 
weeks [9]) is especially useful when genomic information are readily 
needed for instance in case of outbreaks (i) to search for the presence of 
specifi c pathogenicity island or virulence genes, (ii) to identify specifi c 
or multicopy gene targets in order to rapidly develop a reliable molecular 
diagnosis test, and (iii) to identify immunogenic proteins to set up a diag-
nostic tool for sero-epidemiological investigations or to develop a vaccine.

This strategy is particularly interesting for obligate intracellular bacte-
ria such as members of the Chlamydiales order that lack a genetic manipu-
lation system and only replicate within eukaryotic cells of different origins 
including humans, animals and amoebae [13]. One of them, Parachla-
mydia acanthamoebae strain Hall's coccus, was initially isolated from the 
water of an humidifi er at the origin of a fever outbreak [14], and since 
then some evidences have accumulated suggesting the role of this species 
as an emerging human respiratory pathogen [15]. An emerging pathogen 
refers here to an agent that has been recently identifi ed as pathogenic. 
Indeed, several serological and molecular studies supported a role of P. 
acanthamoebae in patients with community-acquired and aspiration pneu-
monia [16], [17], [18]. P. acanthamoebae also appeared to possibly cause 
bronchiolitis in children [19]. Moreover, pneumonia has been reproduced 
in a murine model following intranasal and intratracheal inoculation with 
P. acanthamoebae [20], [21]. Finally, the ability of Parachlamydia to re-
sist to human macrophages [22], [23] further supported its human patho-
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genicity. Besides, the role of P. acanthamoebae in bovine abortion has 
been clearly demonstrated since the bacteria was detected by PCR, im-
munohistochemistry and electron microscopy in the placenta of aborted 
bovines [24]. The pathogenic potential of Parachlamydia towards humans 
and animals still remains largely unexplored since this strict intracellu-
lar bacterium does not grow on media routinely used for the detection of 
pathogens. To date, there are only few strains of Parachlamydia acan-
thamoebae available worldwide. Moreover, little information is avail-
able about strains from cattle and other animals, since no Parachlamydia 
strains have been isolated from animal samples by cell culture. It is thus 
important to develop new diagnostic approaches for P. acanthamoebae to 
better understand its epidemiological and pathogenic potentials in various 
human and animal diseases.

In this work, we undertook a proof of principle project that investigated 
the feasibility of combining genomic and proteomic approaches to rapidly 
identify immunogenic proteins. We showed that, even with relatively short 
reads from Genome Sequencer 20 (GS20) and after homopolymer correc-
tion through Solexa, we can gather almost the whole genome sequence of 
an emerging pathogen, allowing to analyze the proteome and to elaborate 
the fi rst steps of an ELISA test, thus enabling to further evaluate its patho-
genic role.

11.2 RESULTS

11.2.1 GENOME SEQUENCING

The pyrosequencing of P. acanthamoebae genomic DNA by two runs 
of GS20 yielded 566'453 reads of an average length of 111 nucleotides. 
In order to correct eventual frameshifts due to homopolymer errors, ge-
nomic DNA was also sequenced with Solexa technology, which produced 
1'655'941 short reads of 36 bp that could be assembled in 8616 contigs. 
The latters were assembled with GS20 reads in 95 contigs larger than 500 
bp, with a N50 size of 101'998 bp. The coverage obtained with 454 reads 



was of 17x whereas that obtained with Solexa reads was of 12x. The 95 
contigs represents approximately 97% of the total genome and as many as 
99.99% of all the non-repeated regions, i.e. when excluding contigs exhib-
iting a sequence depth higher than 30x with 454. As indicated by the total 
length of the contigs, the complete genome of P. acanthamoebae Hall's 
coccus stands around 3 Mb and was predicted to contain 4798 open read-
ing frames larger than 90 nucleotides. More than 91% of the large contigs 
were covered with Solexa. The 1037 differences between Solexa and 454 
were manually inspected. As many as 405 differences could be attributed 
to the presence of homopolymers and were corrected according to Solexa 
whereas the remaining 632 differences were mainly due to inaccurate So-
lexa contig ends and were not corrected.

11.2.2 IDENTIFICATION OF IMMUNOREACTIVE PROTEINS

To identify immunoreactive proteins that could be used in a diagnostic 
test, total proteins of P. acanthamoebae elementary bodies were separated 
by 2D gel electrophoresis and either Coomassie blue-stained or transferred 
onto nitrocellulose membranes. Immunoblots were performed with sera of 
rabbits immunized with P. acanthamoebae and with human P. acantham-
oebae positive sera (Fig. 1A,C). Spots corresponding to immunogenic 
proteins reacting with at least one rabbit anti-Parachlamydia serum were 
selected by computer-assisted matching of the Coomassie blue-stained 
gel and immunoblots, and further analyzed by mass spectrometry. Eigh-
teen different proteins were identified (Fig. 2A), out of which 5 reacted 
only against sera from immunized rabbits and 13 reacted with both rabbit 
and human Parachlamydia positive sera. Some of these proteins, such as 
chaperonin GroEL (Hsp60), DnaK (Hsp70), elongation factor Tu and the 
ribosomal proteins S1 and L7/L12, were already known to be antigenic 
[25] (Fig. 2B and Table S1). Some classical Chlamydiales immunogenic 
proteins, such as 60 kDa cysteine-rich OMP, LcrE or CPAF protease [25], 
[26], [27] were not detected. Since the corresponding genes were found in 
our contig assembly, these proteins are likely poorly expressed in elemen-
tary bodies or when the bacteria are co-cultivated in amoebae. Membranes 
were also probed with control human sera, i.e. either completely negative 
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FIGURE 1: 2D patterns of the immunoreactive proteins of P. acanthamoebae. Proteins of 
P. acanthamoebae separated by 2D gel electrophoresis were probed with (A) serum from 
immunized rabbit #1, (B) a Chlamydiales negative human serum, (C) a P. acanthamoebae 
positive human serum, and, (D) a C. psittaci positive human serum. Five immunogenic 
proteins are numbered in reference to the following figures.
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for any member of the Chlamydiales order (Fig. 1B), or positive only for 
C. psittaci (Fig. 1D) or C. pneumoniae (see Table S2). Based on 2D immu-
noblots with control sera and blast analysis of the MS identified proteins, 
the best candidates for a diagnostic assay of P. acanthamoebae infection 
were determined (see Table S2). Antigens displaying a high sequence ho-
mology with similar proteins in other species as well as proteins cross-
reacting with non specific or negative sera were discarded. The two best 
candidate proteins were selected for evaluation in an ELISA test (Fig. 2B).

11.2.3 WESTERN-BLOT AND ELISA OF PROTEINS E AND N

The Parachlamydial protein E and N, which have no sequence homology 
with any known protein, were chosen to develop serological diagnostic 
tools. Recombinant proteins E (MW ~58 kDA) and N (MW ~30 kDA) 
were expressed in E. coli and purified thanks to a 6His tail fused to their 
N-terminal end. The purified recombinant proteins were detected by west-
ern blot with a rabbit anti-Parachlamydia serum or with a human P. acan-
thamoebae positive serum (Fig. 3A,C). Lower molecular weight bands 
also visible on these blots probably correspond to degradation products. 
Moreover, faint bands were detectable when protein E was probed with a 
C. psittaci positive serum indicating a low level of cross reaction with this 
organism. For both proteins, no signal was obtained when Chlamydiales 
negative or C. pneumoniae positive sera were tested.

When used as antigen in a direct ELISA assay, purifi ed proteins E and 
N were detected by the sera of two rabbits immunized with P. acantham-
oebae until a dilution value of 1/256 while only background reaction is 

FIGURE 2: 2D map and identification of P. acanthamoebae immunogenic proteins. A. 
Proteins reacting with at least one rabbit anti-Parachlamydia serum were excised from 
gel and analysed by MALDI TOF mass spectrometry. Spots successfully identified are 
numbered. Molecular mass standards are indicated on the right side of the gel. B. The 
potential of 18 immunogenic proteins for use in a serological diagnostic test was evaluated 
based on their reactivity with control sera and on their sequence similarity in BLASTP 
results (see Table S2 for detailed analysis).



observed with pre-immune sera at this and lower dilutions (Fig. 3B,D). 
For both proteins, a signifi cant difference was observed in the level of re-
activity of the two sera. However, both rabbit sera exhibited good antigen 
reactivity when tested by western-blot. Overall, these data demonstrate the 
potential of immunogenic proteins E and N for serological diagnostic tests 
that could be developed in the future.

11.2.4 COMPARISON BETWEEN COMBINED OR SEPARATED 
454 AND SOLEXA APPROACHES TO IDENTIFY PROTEINS

In addition to identifying immunogenic proteins, the most abundantly ex-
pressed proteins of P. acanthamoebae elementary bodies were also ana-
lyzed. A total of 95 Coomassie blue-stained spots were analyzed by mass 
spectrometry and a reliable protein identification was obtained for 85 of 
them using the combined GS20 and Solexa sequences. Identification failed 
for 2 proteins due to the absence of signal by mass spectrometry and for 8 
proteins due to the absence of hits in the genome-derived protein database. 
In many cases multiple spots on the gel corresponded to a single protein 
so that 61 different proteins were identified, including the immunoreactive 
proteins described above (see Fig. S1).

All 61 proteins identifi ed using combined GS20 and Solexa sequenc-
es would also have been identifi ed when using only the GS20 sequences-
derived protein database. However, with uncorrected GS20 sequences, 4 
ORFs presented a frameshift leading twice to a longer protein and twice 
to a premature end of the protein, i.e. splitting the ORF in two parts. 
Only 5 of the 61 proteins identifi ed using combined GS20 and Solexa 
sequences were identical to the predicted ORFs using only Solexa se-
quences. The remaining 56 proteins were split between two to seven dif-
ferent small contigs preventing their accurate identifi cation by Mascot. 
The limited performance of Solexa technology as compared to 454 is 
likely due to the short Solexa reads and the relative low sequence depth 
obtained.
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FIGURE 3: Western blot and ELISA with recombinant proteins E and N. Purified 
recombinant protein E (A) and N (C) were blotted on a nitrocellulose membrane and 
probed with a rabbit anti-Parachlamydia serum (rabbit #1), a rabbit pre-immune serum 
(rabbit #1), a P. acanthamoebae positive human serum, a Chlamydiales negative human 
serum, a C. psittaci positive human serum and a C. pneumoniae positive human serum. 
Proteins E (B) and N (D) were used as antigen in a direct ELISA. Sera from 2 rabbits 
immunized with P. acanthamoebae and pre-immune (pi) sera were tested in duplicates.



11.2.5 MOST ABUNDANTLY EXPRESSED PROTEINS AND 
VIRULENCE GENES

By BLAST against nr database, a function could be derived for half of 
the 61 proteins identified by mass spectrometry (for details, see Table S1 
and Table S3), whereas one fourth have homologs of unknown function in 
Protochlamydia amoebophila genome [33] or in other organisms. Finally, 
the remaining proteins exhibit no significant homology with any known 
amino acid sequence.

Our assembly also enabled the identifi cation of several virulence genes 
present in P. acanthamoebae genome. In addition to the previously men-
tioned LcrE and CPAF protease, P. acanthamoebae encodes a complete 
type three secretion system (T3SS), including components of the secre-
tory apparatus, translocators, T3SS specifi c chaperones and effectors [28]. 
Like in other Chlamydiales species, T3SS genes are spread in distinct 
conserved genomic clusters (see Fig. S2). Interestingly, sctJ and sctC, 
two genes encoding components of the secretory apparatus, are dupli-
cated in the genome. Moreover, four clear homologs to Protochlamydia 
amoebophila nucleotide transporters (ntt_1, ntt_2, ntt_3 and ntt_4) which 
play a key feature in energy parasitism [29], [30] have been identifi ed in 
P. acanthamoebae. A fi fth putative ADP/ATP translocase candidate was 
also detected but homologies were not suffi cient to establish the substrate 
transport specifi city. Finally, four genes belonging to the F-like conjuga-
tive DNA transfer operon located on the genomic island of Protochla-
mydia amoebophila [31] were also detected in P. acanthamoebae (traU, 
traN, traF and pc1435).

11.3 DISCUSSION

In case of outbreak due to a new pathogen, diagnostic tests must be de-
veloped rapidly. Genome sequence is an important resource to develop 
various tools for molecular and serological diagnostic, specific monoclo-
nal antibodies production or vaccine design. With the availability of high 
throughput sequencing strategies such as the widely used GS20/GSFLX 
[1], large sequence datasets are now obtained within very short time. How-
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ever, the costly and time-consuming follow up necessary to close the gaps 
delays the release and accessibility of most genome sequences. As shown 
for Francisella tularensis, a rapid comparative genome analysis can be 
successfully applied on unfinished contigs enabling to uncover genomic 
rearrangements or gene mutations that could be involved in an increased 
strain virulence and resistance [9]. A similar approach was also proposed 
to study the role of Helicobacter pylori in chronic gastric infection by 
analyzing genetic changes in this species over time or between infected 
humans [32].

A rapid and public availability of raw genome data from an emerging 
pathogen at the origin of an outbreak is critical to permit the development 
of various diagnostic tools by medical microbiologists. The delay before 
genome release is especially crucial in case of new pathogenic agents with 
the absence of available closely related genomes, i.e. absence of scaffold 
that may be used to facilitate assembly and gap closure steps. This prob-
lem was faced here for P. acanthamoebae with the availability of a single 
published genome within the Parachlamydiacaeae family, that of Proto-
chlamydia amoebophila [33]. The presence of repeated elements in the 
genome signifi cantly increases the number of contigs obtained, thus pro-
longing the gap closure. Although Chlamydiaceae genomes do not contain 
many transposases, the genome sequence of Protochlamydia amoebophila 
was much more invaded by such repeated components [33]. This suggests 
that sequence repetitions probably account for a large number of gaps in 
our own Parachlamydia genome project. Nevertheless, if these repeated 
elements can prevent an assembly in one unique contig, they do not hin-
der the availability of most coding sequences. Indeed, 90% of analyzed 
proteins could be identifi ed, the remaining 10% being uncharacterized due 
either to the lack of mass spectrometry signal or to the lack of hits in the 
ORF database. Thus, although we could not determine the exact num-
ber of immunogenic proteins that have been missed due to the presence 
of the remaining gaps, we may estimate that only few (<10%) additional 
immunogenic proteins would have been identifi ed if a complete genome 
sequence was available.

Our proteomic approach allowed us to detect 18 immunogenic proteins 
among which are several antigens already described as highly immunore-
active such as GroEL, DnaK or elongation factor Tu [25]. Five proteins 



represented good/possible candidates to develop a diagnostic test since 
exhibiting signifi cant reactivity to sera taken from humans infected by 
Parachlamydia as well as from immunized rabbits and no cross-reactivity 
to sera from humans infected with C. pneumoniae, C. psittaci and negative 
controls. Then, we focused on only two of these fi ve proteins, E and N, 
displaying no signifi cant homology with any known amino acid sequence. 
Their potential to develop vaccine or diagnostic tools was suggested by 
western-blot and by preliminary ELISA tests despite the absence, in the 
heterologous protein expression system used, of post-translational modifi -
cations such as glycosylation or phosphorylation that might have resulted 
in poor serum recognition. Given its 96-well format, the ELISA test, once 
developed, would be very useful in large epidemiological studies to as-
sess the precise seroprevalence of Parachlamydia antibodies in human 
population and to confi rm the pathogenic role of this intracellular bacte-
rium in human lower respiratory tract infections and in bovine abortion. 
Moreover, an ELISA based on a given immunogenic protein will be more 
specifi c than diagnostic microimmunofl uorescence and western-blot as-
says based on whole bacterial proteins.

Interestingly, among the 85 ORFs identifi ed using our dirty genome se-
quences, only 9 proteins could have been identifi ed by Mascot versus pro-
tein sequences of the closest related bacteria available to date, Protochla-
mydia amoebophila, all of which are very conserved and, if immunogenic, 
would likely produce strong cross reactions when used in serological tests. 
In addition, among the fi ve immunogenic proteins selected as good and 
possible candidates for the development of a diagnostic ELISA, none have 
been identifi ed by Mascot versus SPTrembl database because of the differ-
ences between the peptides identifi ed and the protein database. Moreover, 
the two proteins we considered as the best candidates have no homologs 
in other genomes and their sequences could not be derived from those of 
any related or unrelated bacteria.

This further emphasizes the need for a protein database directly de-
rived from genome sequences of the studied emerging pathogen. Besides, 
rapid genome sequencing provides information useful not only for pro-
teomics but also for comparative genomics, transcriptomics, cell biology 
and molecular biology. The availability of most genome sequences of a 
new emerging pathogen isolated during an outbreak may also be important 
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to design molecular diagnostic tools, to defi ne epidemiological marker as 
well as to identify virulence genetic traits and antibiotic resistance deter-
minants.

The advantages of using mass spectrometry associated with an unfi n-
ished genome to identify immunogenic proteins, compared to other ap-
proaches such as phage display library [34], [35], comparative genomic 
[36] or systematic expression of all ORFs [37], resides mainly in the mini-
mal necessary workload and in the rapidity of the method. Indeed, the 
whole process can take place in less than 4 months, with only 2 weeks 
necessary to obtain the contigs (Fig. 4). In addition, with the lowering 
of sequencing costs, the price of such an approach is highly competitive. 
Furthermore, constructing random expression libraries by fractionation 
of whole bacterial DNA would likely identify less immunogenic proteins 
since any plasmid carrying ORFs whose product is toxic will not be suc-
cessfully expressed.

The 4 months that it takes to develop an ELISA may seem long as com-
pared to the few weeks needed to develop a DNA-based test. However, 
detecting proteins represents a distinct advantage over detecting unique 
DNA sequences, and the availability of a serological test may especially 
prove very useful (i) to confi rm positive PCR results (that may be false 
positive due to PCR contamination) and to better document a given case, 
(ii) to perform large seroepidemiological studies in order to precise the 
mode of transmission of a new pathogen and (iii) to investigate the pos-
sible role of a new bacterial pathogen in different clinical settings, such as 
pericarditis and endocarditis, for which valvular/pericardial fl uid samples 
are not easily available. Similarly, when investigating patients with atypi-
cal pneumonia, serum samples are easier to obtain than lower respiratory 
tract specimen, especially when patients present a non-productive cough. 
Moreover, for several fastidious intracellular bacteria, even highly sensi-
tive PCR tests may fail in detecting the agent at the infection site (i) due to 
relatively low bacterial load, e.g. sensitivity of only 50% to detect Borrelia 
in cerebrospinal fl uid taken from patient with neurological Lyme disease 
[38], (ii) due to the presence of inhibiting molecules present in clinical 
samples, or (iii) due to “sampling bias” of PCRs tests performed on tis-
sue samples, e.g. sensitivity of 60% of PCR on valve samples taken from 
patients with defi nite endocarditis [39].



FIGURE 4: Time scale of a dirty genome approach combined with proteomics to develop 
serological diagnostic tools. Schematic representation of the main steps of genome 
sequencing, immunogenic proteins identification and testing of candidate proteins in an 
ELISA. In bold, approximate time necessary to complete each step.

316 Omics in Clinical Practice



High Throughput Sequencing to Identify Proteins of a New Pathogen 317

Furthermore, the identifi cation of immunogenic proteins also allows the 
development of species specifi c immunohistochemistry, that is useful (i) to 
confi rm the presence of the pathogen in the tissue lesions, (ii) to analyze 
retrospectively various biopsy samples taken from patients with infection 
of unknown etiology and (iii) to shed some light on the underlying patho-
genesis in vivo, by precising which cells are infected using double staining.

In summary, this work constitutes the proof of principle for a dirty ge-
nome approach, i.e. the use of unfi nished genome sequences of pathogenic 
bacteria, coupled with proteomics to rapidly identify immunogenic pro-
teins useful to develop a specifi c diagnostic test. Indeed, genomic informa-
tion concerning new emerging pathogens must be placed at the scientifi c 
community's disposal as soon as possible, since their retention in order to 
close all gaps before genome publication is clearly medically counterpro-
ductive. This work demonstrated that 454/Solexa combined dirty genomes 
are suffi cient and useful for medical downstream applications.

11.4 METHODS

11.4.1 ETHICS STATEMENT

Human sera used in this work (see below) have been obtained from pa-
tients and control subjects, as part of prospective studies. These clinical 
studies have been accepted by the local ethical committee of the Universi-
ty of Lausanne. Both patients and controls gave their informed consent for 
various serological investigations including study of their serum reactivity 
against Parachlamydia acanthamoebae.

11.4.2 CULTIVATION AND PURIFICATION OF P. 
ACANTHAMOEBAE

Parachlamydia acanthamoebae strain Hall's coccus was grown in Acan-
thamoeba castellanii strain ATCC 30010 in peptone yeast-extract glucose 



broth (PYG) and purified using a sucrose barrier and a gastrographin gra-
dient, as previously described [22].

11.4.3 CHROMOSOME SEQUENCING AND ASSEMBLY

Purified P. acanthamoebae elementary bodies resuspended in PBS were 
lysed for DNA extraction with QIAamp DNA mini kit (Qiagen) according 
to the manufacturer protocol. Genomic DNA was pyrosequenced by two 
runs of Genome Sequencer 20 [1]. Genomic DNA was also sequenced us-
ing Solexa technology in Illumina Genome Analyzer [2]. Solexa sequenc-
es were assembled using Edena software [40] with parameter m = 16. Both 
GS20 runs only or GS20 runs and Solexa contigs were compiled in one 
assembly using Newbler software V1.1.02 with default parameters except 
for overlap size (45 nt) and identity score (95%). Differences between 454 
and solexa contigs were manually inspected and corrected when neces-
sary. In case of homopolymer discrepancy preference was generally given 
to Solexa when correcting frameshifts in protein coding region and in po-
tentially non coding regions.

11.4.4 GENE PREDICTION AND ANNOTATION

To improve the prediction of incomplete genes at contig ends, a stop en-
coding tag “CTAGCTAGCTAG” was added at both extremities of each 
contig. A reference proteome was created with all open reading frames 
(stop to stop ORF) for peptide identification. Besides, locally installed 
Glimmer v3.02 [41] trained on long ORFs of the concatenated contigs 
was then applied to predict gene position on contigs longer than 500 bp. 
All reported ORFs larger than 100 nt were submitted to BLASTP ver-
sus nr database and local InterProScan search. Finally, tRNAscan-SE [42] 
and RNAmmer [43] were used to find structural RNAs. Genes of special 
importance for this study were manually annotated. This Whole Genome 
Shotgun project has been deposited at DDBJ/EMBL/GenBank under the 
accession ACZE00000000. The version described in this paper is the first 
version, ACZE01000000.
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11.4.5 CRUDE EXTRACT SAMPLE PREPARATION AND 2D GEL 
ELECTROPHORESIS

Bacterial cells resuspended in PBS were washed in 10 mM Tris, 5 mM 
MgAc, pH 8.0 and then lysed by 5 cycles of short-pulse sonication in lysis 
buffer (30 mM Tris, 7 M urea, 2 M Thiourea, 4% CHAPS, pH 8.5). Pro-
teins were recovered by centrifugation at 6'000 g and their concentration 
determined using a Bradford assay (Quick Start™ Bradford Protein Assay, 
Biorad, Hercules, USA).

Two dimensional gel electrophoresis was performed as described by 
Centeno et al. [44] using approximately 150 μg (mini gels) or 600 μg 
(midi-gels) of total elementary bodies proteins. Proteins were visualized 
by Coomassie Blue staining or transferred to nitrocellulose for subsequent 
immunoblot analysis (see Methods S1).

11.4.6 HUMAN SERA

P. acanthamoebae positive human sera were described in previous studies 
where their positivity was assessed by immunofluorescence and western-
blot [17], [45]. Control sera were taken from women with at term unevent-
ful pregnancy [45]. Chlamydiales negative sera were tested negative by 
immunofluorescence for reactivity against various members of the Chla-
mydiales order (P. acanthamoebae, W. chondrophila, S. negevensis, N. 
hartmannellae, C. trachomatis, C. pneumoniae and C. psittaci), C. pneu-
moniae positive sera were positive for C. pneumoniae but negative for all 
other Chlamydiales tested. C. psittaci positive human serum was taken 
from a patient who suffered from well-documented psittacosis [46].

11.4.7 ELISA

Proteins E and N cloned and expressed in E. coli were purified thanks to a 
6His tail (see Methods S1). Then, 96-well ELISA microplates were coated 
with 100 ng of purified E or N proteins in carbonate buffer pH 9.6 and 



incubated overnight at 4°C. After blocking with 3% non-fat dry-milk in 
PBST (PBS + 0.1% Tween 20) during 1 hour at 37°C, plates were washed 
with PBST and incubated 2 hours at 37°C with serial two-fold dilutions, 
in PBST+1% non-fat dry-milk, of sera from 2 rabbits immunized with 
P. acanthamoebae and of corresponding pre-immune sera. After 3 subse-
quent washes with PBST, plates were incubated 1 hour at 37°C with horse-
radish peroxidase-conjugated anti-rabbit IgG (Cell Signaling, Allschwill, 
Switzerland) diluted 1:1000 in PBS + 1% non-fat dry-milk. Plates were 
washed 5 more times with PBST. O-phenylenediamine dihydrochloride 
(OPD) in citrate buffer was used as substrate for the peroxydase. After 
15 minutes incubation, the optical density was read at 492 nm using an 
ELISA reader (Multiskan Ascent, Thermo Scientific, Waltham, USA).

11.4.8 ADDITIONAL METHODS

Descriptions of sera from immunized rabbits, immunoblot analysis, mass 
spectrometry and cloning, expression and purification of immunogenic 
proteins E and N are available in Methods S1.
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CORONAVIRUS GENOMICS AND 
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AND KWOK-YUNG YUEN

12.1 INTRODUCTION

Traditionally, viruses were characterized and classified by culture, elec-
tron microscopy and serological studies. Using these phenotypic methods, 
coronaviruses were defined as enveloped viruses of 120-160 nm in diame-
ter with a crown-like appearance. The name “coronavirus” is derived from 
the Greek κορώνα, meaning crown. Based on their antigenic relationships, 
coronaviruses were classified into three groups. Group 1 and 2 are com-
posed of mammalian coronaviruses and group 3 avian coronaviruses. The 
invention of and advances in nucleic acid amplification technologies, auto-
mated DNA sequencing and bioinformatics tools in the recent two decades 
have revolutionized the characterization and classification of all kinds of 
infectious disease agents. Using molecular methods, coronaviruses are 
classified as positive-sense, single-stranded RNA viruses. Furthermore, 
the results of using phylogenetic methods for classification also supported 
the group boundaries of the traditional antigenic classification. Phylogenetic 



methods have also enabled the classification of SARS-related coronavirus 
(SARSr-CoV) as a subgroup of group 2, group 2b, coronavirus; as well as 
the discovery of group 2c, 2d, 3b and 3c coronaviruses [1-3]. Recently, the 
Coronavirus Study Group of the International Committee for Taxonomy 
of Viruses has proposed three genera, Alphacoronavirus, Betacoronavirus 
and Gammacoronavirus, to replace these three traditional groups of coro-
naviruses [4].

The fi rst complete genome of coronavirus, mouse hepatitis virus 
(MHV), was sequenced more than 50 years after it was isolated. Before 
the SARS epidemic in 2003, there were less than 10 coronaviruses with 
complete genome sequences available. These include two human corona-
viruses (HCoV-229E and HCoV-OC43), four other mammalian corona-
viruses [MHV, bovine coronavirus (BCoV), transmissible gastroenteritis 
virus (TGEV), porcine epidemic diarrhea virus (PEDV)], and one avian 
coronavirus (IBV). The SARS epidemic that originated from southern 
China in 2003 has boosted interest in all areas of coronavirus research, 
most notably, coronavirus biodiversity and genomics [5-7]. After the 
SARS epidemic, up to April 2010, 15 novel coronaviruses were discov-
ered with their complete genomes sequenced. Among these 15 previously 
unrecognized coronaviruses were two globally distributed human coro-
naviruses, human coronavirus NL63 (HCoV-NL63) and human corona-
virus HKU1 (HCoV-HKU1) [8-10]; 10 other mammalian coronaviruses, 
SARS-related Rhinolophus bat coronavirus (SARSr-Rh-BatCoV), Rhino-
lophus bat coronavirus HKU2 (Rh-BatCoV HKU2), Tylonycteris bat coro-
navirus HKU4 (Ty-BatCoV HKU4), Pipistrellus bat coronavirus HKU5 
(Pi-BatCoV HKU5), Miniopterus bat coronavirus HKU8 (Mi-BatCoV 
HKU8), Rousettus bat coronavirus HKU9 (Ro-BatCoV HKU9), Scoto-
philus bat coronavirus 512 (Sc-BatCoV 512), Miniopterus bat coronavirus 
1A/B (Mi-BatCoV 1A/B), equine coronavirus (ECoV) and beluga whale 
coronavirus SW1 [3,6,11-15]; and three avian coronaviruses, bulbul coro-
navirus HKU11 (BuCoV HKU11), thrush coronavirus HKU12 (ThCoV 
HKU12) and munia coronavirus HKU13 (MunCoV HKU13) [2]. Most 
of these genomes were sequenced using the RNA extracted directly from 
the clinical specimens, such as nasopharyngeal aspirate or stool, as the 
template, while the viruses themselves were still non-cultivable [2,3,6,11-
15]. This provided more accurate analysis of the in situ viral genomes 
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avoiding mutational bias during in vitro viral replication. These sequence 
efforts have resulted in a marked increase in the number of coronavirus 
genomes and have given us an unprecedented opportunity to understand 
this family of virus at the genomic and in silico levels. These understand-
ings have also led to generation of further hypotheses and experiments in 
the laboratory. In this article, we reviewed our current understanding on 
the genomics and bioinformatics analysis of coronaviruses. Details of the 
bioinformatics tools will not be discussed.

12.2 GENOMICS

Coronaviruses possess the largest genomes [26.4 kb (ThCoV HKU12) to 
31.7 kb (SW1)] among all known RNA viruses (Figure 1) [2,13,16]. The 
large genome has given this family of virus extra plasticity in accommo-
dating and modifying genes. The G + C contents of coronavirus genomes 
vary from 32% (HCoV-HKU1) to 43% (Pi-BatCoV HKU5 and MunCoV 
HKU13) (Table 1) [2,3,10]. Both the 5’ and 3’ ends of coronavirus ge-
nomes contain short untranslated regions. For the coding regions, the ge-
nome organizations of all coronaviruses are similar, with the characteristic 
gene order 5’-replicase ORF1ab, spike (S), envelope (E), membrane (M), 
nucleocapsid (N)-3’, although variable numbers of additional ORFs are 
present in each subgroup of coronavirus (Table 1, Figure 1). A transcrip-
tion regulatory sequence (TRS) motif is present at the 3’ end of the leader 
sequence preceding most ORFs (Table 1). The TRS motifs are thought 
to be important for a “copy-choice” mechanism that mediates the unique 
random template switching during RNA replication, resulting in a high 
frequency of homologous RNA recombination in coronaviruses [17].

12.2.1 ORF1AB

ORF1ab of coronaviruses occupy about two thirds of their genomes. It 
encodes the replicase polyprotein and is translated from ORF1a (11826 
to 13425 nt) and ORF1b (7983 to 8157 nt). In all coronaviruses, a slip-
pery sequence (UUUAAAC), followed by sequences that form a 



putative pseudoknot structure, are present at the junction between ORF1a 
and ORF1b. Translation occurs by a -1 RNA-mediated ribosomal frame-
shift at the end of the slippery sequence. Instead of reading the transcript 
as UUUAAACGGG, it will be read as UUUAAACCGGG. The replicase 
polyprotein is cleaved by papain-like protease(s) (PLpro) and 3C-like pro-
tease (3CLpro), proteins encoded by ORF1ab of the coronavirus genome, 
at consensus cleavage sites, into 15 to 16 non-structural proteins (nsps) 
named nsp1, nsp2, nsp3, etc (Table 1). As the number of coronavirus ge-
nomes is expanding, novel cleavage sites have been discovered [3,18]. 
Some of these non-structural proteins encode proteins of essential func-
tions, such as PLpro (nsp3), 3CLpro (nsp5), RNA-dependent RNA poly-
merase (Pol) (nsp12) and helicase (nsp13) (Figure 1). The genomes of all 
known members of Alphacoronavirus and Betacoronavirus subgroup A 
possess two PLpro (PL1pro and PL2pro), while those of all known members 
of Betacoronavirus subgroup B, C and D and Gammacoronavirus possess 
only one PLpro (Table 1, Figure 1). The gene sequences that encode these 
conserved proteins are frequently used for phylogenetic analysis.

In addition to the nsps with essential functions, bioinformatics analysis 
of some other nsps revealed their putative functions. Downstream to PLpro 
or PL1pro in nsp3 is the X domain which contains putative ADP-ribose 
1“-phosphatase (ADRP) activity [1]. In other microorganisms, such as 
Saccharomyces cerevisiae and other eukaryotes, ADRP and its function-
ally related enzyme cyclic nucleotide phosphodiesterase (CPDase), were 
important for tRNA processing [19]. ADP-ribose 1“,2“-cyclic phosphate 
(Appr>p) is produced as a result of tRNA splicing. Appr>p is in turn con-
verted to ADP-ribose 1“-phosphate (Appr-1“p) by CPDase and Appr-1“p 
is then further processed by ADRP. As for nsp13, nsp14 and nsp15, they 
possess a putative 3’-to-5’ exonuclease (ExoN) domain of the DEDD su-
perfamily [1], a putative poly(U)-specifi c endoribonuclease (XendoU) 
domain, and a putative S-adenosylmethionine-dependent ribose 2’-O-
methyltransferase (2’-O-MT) domain of the RrmJ family respectively [1]. 
ADRP, CPDase, ExoN, XendoU and 2’-O-MT are enzymes in RNA pro-
cessing pathways. Contrary to the pre-tRNA splicing pathway that ADRP 
and CPDase belong to, ExoN, XendoU and 2’-O-MT are enzymes in a 
small nucleolar RNA processing and utilization pathway.
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12.2.2 HAEMAGGLUTININ ESTERASE

In all members of Betacoronavirus subgroup A, a haemagglutinin esterase 
(HE) gene, which encodes a glycoprotein with neuraminate O-acetyl-es-
terase activity and the active site FGDS, is present downstream to ORF1ab 
and upstream to S gene (Figure 1). The HE gene of coronavirus is believed 
to be acquired from influenza C virus, and is the most notable example of 
acquisition of new genes from non-coronavirus RNA donors by heterolo-
gous recombination [20]. The presence of HE genes exclusively in mem-
bers of Betacoronavirus subgroup A, but not members of Betacoronavirus 
subgroup B, C and D suggested that the recombination had probably oc-
curred in the ancestor of members of Betacoronavirus subgroup A, after 
diverging from the ancestor of other subgroups of Betacoronavirus.

FIGURE 1: Genome organizations of members in different genera of the Coronaviridae 
family. PL1, papain-like protease 1; PL2, papain-like protease 2; PL, papain-like protease; 
3CL, chymotrypsin-like protease; Pol, RNA-dependent RNA polymerase; Hel, helicase; 
HE, haemagglutinin esterase; S, spike; E, envelope; M, membrane; N, nucleocapsid. 
TGEV, porcine transmissible gastroenteritis virus (NC_002306); PRCV, porcine respiratory 
coronavirus (DQ811787); FCoV, feline coronavirus (NC_012937); HCoV-229E, human 
coronavirus 229E (NC_002645); HCoV-NL63, human coronavirus NL63 (NC_005831); 
PEDV, porcine epidemic diarrhea virus (NC_003436); Sc-BatCoV 512, Scotophilus bat 
coronavirus 512 (NC_009657); Rh-BatCoV-HKU2, Rhinolophus bat coronavirus HKU2 
(NC_009988); Mi-BatCoV-HKU8, Miniopterus bat coronavirus HKU8 (NC_010438); 
Mi-BatCoV 1A, Miniopterus bat coronavirus 1A (NC_010437); Mi-BatCoV 1B, 
Miniopterus bat coronavirus 1B (NC_010436); HCoV-OC43, human coronavirus OC43 
(NC_005147); BCoV, bovine coronavirus (NC_003045); PHEV, porcine hemagglutinating 
encephalomyelitis virus (NC_007732); HCoV-HKU1, human coronavirus HKU1 
(NC_006577); MHV, mouse hepatitis virus (NC_006852); ECoV, equine coronavirus 
(NC_010327); SARSr-CoV, human SARS related coronavirus (NC_004718); SARSr-Rh-
BatCoV HKU3, SARS-related Rhinolophus bat coronavirus HKU3 (NC_009694); Ty-
BatCoV-HKU4, Tylonycteris bat coronavirus HKU4 (NC_009019); Pi-BatCoV-HKU5, 
Pipistrellus bat coronavirus HKU5 (NC_009020); Ro-BatCoV-HKU9, Rousettus bat 
coronavirus HKU9 (NC_009021); IBV, infectious bronchitis virus (NC_001451); TCoV, 
turkey coronavirus (NC_010800); SW1, beluga whale coronavirus (NC_010646); BuCoV 
HKU11, bulbul coronavirus HKU11 (FJ376620); ThCoV HKU12, thrush coronavirus 
HKU12 (NC_011549); MunCoV HKU13, munia coronavirus HKU13 (NC_011550). 



12.2.3 SPIKE

The S proteins are responsible for the “spikes” present on the surface of 
coronaviruses and give this family of virus the characteristic crown-like 
appearance under electron microscopy. The S proteins are type I mem-
brane glycoproteins with signal peptides. The S proteins are used for re-
ceptor binding and viral entry, and are the proteins with the most vari-
able sequences in the coronavirus genomes. In some coronaviruses, the 
S proteins are cleaved into the S1 and S2 domains at consensus cleavage 
site (RRSRR of BCoV, RRSR of HCoV-OC43, RRKRR of HCoV-HKU1, 
RSRR of PHEV, RRADR of MHV, RRFRR of SDAV and RRFRR of IBV) 
(Table 1), with the sequences of the S1 domains much more variable than 
the S2 domains. In all coronaviruses, most of the S protein is exposed on 
the outside of the virus, with a short transmembrane domain at the C ter-
minus, followed by a short cytoplasmic tail rich in cysteine residues. Two 
heptad repeats are present at the C termini of the extracellular parts of the 
S proteins. At the moment, no bioinformatics tool is available for accurate 
prediction of the receptor by analyzing the amino acid sequences of the S 
proteins of the corresponding coronaviruses.

12.2.4 ENVELOPE AND MEMBRANE

The E and M proteins are small transmembrane proteins associated with 
the envelope of all coronaviruses. In some coronaviruses, such as MHV 
and SDAV and possibly HCoV-HKU1, the translation of the E protein is 
cap-independent, via an internal ribosomal entry site. Although these two 
genes are conserved among all coronaviruses, they are not good targets for 
phylogenetic studies because of their short sequences.

12.2.5 NUCLEOCAPSID

Similar to the conserved proteins encoded by ORF1ab, the N gene is also 
another common target for phylogenetic analysis. Due to its immunoge-
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nicity, it is also a common target for cloning and generation of recombi-
nant proteins for serological assays.

12.2.6 OTHER SMALL ORFS

Variable numbers of small ORFs are present between the various con-
served genes in different lineages in the Coronaviridae family (Table 1, 
Figure 1). In some coronaviruses, small ORFs are present downstream to 
the N gene (Table 1, Figure 1). Most of these small ORFs are of unknown 
function. One exception is the small ORFs downstream to N in feline in-
fectious peritonitis virus (FIPV) and TGEV, which are important for viru-
lence and viral replication/assembly respectively [21-23]. Another notable 
exception is the 3a protein of SARSr-CoV, which forms a transmembrane 
homotetramer complex with ion channel function and modulates virus re-
lease [24]. For some of these small ORFs, such as ORF3a and ORF8 of 
SARSr-CoV genomes, their sequences are as highly variable as those of 
the S proteins. In particular, the most significant difference between hu-
man SARSr-CoV and civet SARSr-CoV genomes was a 29-bp deletion in 
the ORF8 of human SARSr-CoV [25].

12.3 PHYLOGENY

The first impression of the phylogenetic position of a strain or species of 
coronavirus is usually acquired by constructing a phylogenetic tree using 
a short fragment of a conserved gene, such as Pol or N. However, this 
can sometimes be misleading because the results of phylogenetic analysis 
using different genes or characters can be different. When SARSr-CoV 
was first discovered, it was proposed that it constituted a fourth group of 
coronavirus [26,27]. However, analyses of the amino-terminal domain of 
S of SARSr-CoV revealed that 19 out of the 20 cysteine residues were spa-
tially conserved with those of the consensus sequence for Betacoronavirus 
[28]. On the other hand, only five of the cysteine residues were spatially 
conserved with those of the consensus sequences in Alphacoronavirus and 



Gammacoronavirus [28]. Furthermore, subsequent phylogenetic analysis 
using both complete genome sequence and proteomic approaches, it was 
concluded that SARSr-CoV is probably an early split-off from the Beta-
coronavirus lineage [1], and SARSr-CoV was subsequently classified as 
Betacoronavirus subgroup B and the historical Betacoronavirus as Beta-
coronavirus subgroup A. Therefore, the phylogenetic position of a corona-
virus is best appreciated and confirmed by constructing phylogenetic trees 
using different genes in the coronavirus genome. The most commonly 
used genes along the coronavirus genome for phylogenetic studies include 
chymotrypsin-like protease, Pol (Figure 2), helicase, S and N, because 
these genes are present in all coronavirus genomes and are of significant 
length. The envelope and membrane genes, although present in all corona-
virus genomes, are too short for phylogenetic studies. It is noteworthy that 
the cluster formed by the three novel avian coronaviruses BuCoV HKU11, 
ThCoV HKU12 and MunCoV HKU13, which was originated proposed 
as group 3c [2], might represent a new coronavirus genus provisionally 
designated Deltacoronavirus (Figure 2).

Using this approach of multiple gene phylogenetic studies, unique 
phylogeny of individual gene that may have biological signifi cance may 
be discovered. During our phylogenetic study on Rh-BatCoV HKU2, an-
other coronavirus that has was also found in the stool samples of Chinese 
horseshoe bats, its unique S protein phylogenetically distinct from the rest 
of the genome was discovered [15]. The S protein of Rh-BatCoV HKU2 is 
the shortest among S proteins of all coronaviruses and had less than 30% 
amino acid identities to those of all known coronaviruses, in contrast to 
other genes that showed higher amino acid identities to the correspond-
ing genes in other members of Alphacoronavirus. When the S protein of 
Rh-BatCoV HKU2 is aligned with those of other members of Alphacoro-
navirus, many of the amino acid residues conserved among and specifi c 
to Alphacoronavirus were not found. Rather, the S protein of Rh-BatCoV 
HKU2 shares the two conserved regions of deletions both of 14 amino ac-
ids among members of Betacoronavirus in its C-terminus, suggesting that 
this segment of the S protein of Rh-BatCoV HKU2 may have co-evolved 
with the corresponding regions in Betacoronavirus. Most interestingly, a 
short peptide of 15 amino acids in the S protein of Rh-BatCoV HKU2 was 
found to be homologous to a corresponding peptide within the RBM in the 
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FIGURE 2: Phylogenetic analysis of RNA-dependent RNA polymerases (Pol) of 
coronaviruses with complete genome sequences available. The tree was constructed by 
the neighbor-joining method and rooted using Breda virus polyprotein (YP_337905). 
Bootstrap values were calculated from 1000 trees. 1118 amino acid positions in Pol were 
included. The scale bar indicates the estimated number of substitutions per 20 amino acids. 
All abbreviations for the coronaviruses were the same as those in Figure 1.



S1 domain of SARSr-CoV. A similar peptide was also observed in SARSr-
Rh-BatCoV, but not in any other known coronaviruses. These suggested 
that there is a common evolutionary origin in the S protein of SARSr-
CoV, SARSr-Rh-BatCoV and Rh-BatCoV HKU2, and Rh-BatCoV HKU2 
might have acquired its unique S protein from a yet unidentifi ed coronavi-
rus through recombination.

12.4 EVOLUTIONARY RATE AND DIVERGENCE

In 1992, Sanchez et al. analyzed 13 enteric and respiratory TGEV related 
isolates and estimated the mutation rate of TGEV to be 7 x 10-4 nucleotide 
substitutions per site per year [29]. 1n 2005, using linear regression, maxi-
mum likelihood and Bayesian inference methods, Vijgen et al. estimated 
the rate of evolution in BCoV to be 4.3 (95% confidence internal 2.7 to 
6.0) x 10-4 nucleotide substitutions per site per year [30]. The estimation 
of time of divergence was first extensively used in coronaviruses after the 
SARS epidemic for estimating the date of interspecies jumping of SARSr-
CoV from civets to humans and that from BCoV to HCoV-OC43 [31,32]. 
Subsequently, when various novel human and animal coronaviruses were 
discovered, evolutionary rates and divergence time in the Coronaviri-
dae family were estimated by various groups using different approaches 
[31,33-35]. Although Bayesian inference in BEAST is probably the most 
widely accepted approach and was used by most researchers, the use of 
different genes (ORF1ab, helicase, S and N genes) and datasets by differ-
ent groups have resulted in considerable difference in the estimated his-
tory of coronaviruses. It was found that the S and N genes of PHEV, BCoV 
and HCoV-OC43 evolved at different rates, and the divergence time of the 
PHEV lineage and the HCoV-OC43 and BCoV lineage based on these two 
rates were 100 years different [31]. One group, using the helicase gene for 
analysis, has estimated the life history of coronaviruses to be as short as 
about 420 years [35].

Recently, we used the uncorrelated exponentially distributed relaxed 
clock model (UCED) in BEAST version 1.4 [36] to estimate the time of 
divergence of SARSr-CoV based on an alignment of a large set of SARSr-
Rh-BatCoV ORF1 sequences collected over a period of fi ve years. Under 
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this model, the rates were allowed to vary at each branch drawn inde-
pendently from an exponential distribution. Using this model and large 
dataset, the time of emergence of SARSr-CoV was at 1972, about 31 years 
before the SARS epidemic; that of SARSr-CoV in civet was at 1995, about 
eight years before the SARS epidemic; and the most recent common an-
cestor date of human and civet SARSr-CoV was estimated to be 2001.36, 
which was comparable to the dates estimated by other groups (Table 2) 
[37].

12.5 RECOMBINATION ANALYSIS

As a result of their unique random template switching during RNA repli-
cation, thought to be mediated by a “copy-choice” mechanism, coronavi-
ruses have a high frequency of homologous RNA recombination [41,42]. 
Recombination in coronaviruses was first recognized between different 
strains of MHV and subsequently in other coronaviruses such as IBV, be-
tween MHV and BCoV, and between feline coronavirus (FCoV) type I and 
canine coronavirus (CCoV) [43-46]. As shown below, such recombina-
tion can result in the generation of coronavirus species or different geno-
types within a coronavirus species. In our experience, the possibility of 
homologous RNA recombination and the possible part of the genome that 
recombination has taken place are usually first appreciated using bootscan 
analysis or phylogenetic analysis using different parts of the coronavi-
rus genome. Other methods for recombination analysis, such as those in 
the RDP3 package, are also available. Then, the exact site of homologous 
RNA recombination would be best revealed by multiple sequence align-
ment.

The best documented example of generation of coronavirus species 
through homologous RNA recombination is the generation of FCoV type 
II by double recombination between FCoV type I and CCoV. It was fi rst 
observed that the sequence of the S protein in FCoV type II was closely re-
lated to that of CCoV [47,48] but the sequence downstream of the E gene 
in FCoV type II was more closely related to that of FCoV type I strain than 
to CCoV [49,50]. This observation suggested that there might have been 
a homologous RNA recombination event between the genomes of CCoV 
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and FCoV type I, resulting in the generation of FCoV type II. Further anal-
ysis by multiple sequence alignments pinpointed the site of recombination 
to a region in the E gene. A few years later, an additional recombination re-
gion in the Pol gene was also discovered, and it was concluded that FCoV 
type II originated from two recombination events between the genomes of 
CCoV and FCoV type I [43].

As for the generation of different genotypes in a coronavirus species 
through homologous RNA recombination, the best documented example 
is HCoV-HKU1. The possibility of homologous RNA recombination was 
fi rst suspected when a few strains of HCoV-HKU1 showed differential 
clustering when the Pol, S and N genes were used for phylogenetic tree 
construction [51]. This observation has led to our subsequent study on 
complete genome sequencing of 22 strains of HCoV-HKU1. Recombina-
tion analysis by bootscan analysis and phylogenetic analysis using dif-
ferent parts of the 22 complete genomes revealed extensive recombina-
tion in different parts of the genomes, resulting in the generation of three 
genotypes, A, B and C, of HCoV-HKU1 [52]. Using multiple sequence 
alignment, two sites of recombination were pinpointed. The fi rst one was 
observed in a stretch of 143 nucleotides near the 3’ end of nsp6, where re-
combination between HCoV-HKU1 genotype B and genotype C has gen-
erated genotype A; and the second one in another stretch of 29 nucleotides 
near the 3’ end of nsp16, where recombination between HCoV-HKU1 
genotype A and genotype B has generated genotype C [52].

12.6 CODON USAGE BIAS

Recently, using the complete genome sequences of the 19 coronavirus 
genomes, we analyzed the codon usage bias in coronaviruses as well as 
selection of CpG suppressed clones by the immune system and cytosine 
deamination being the two major independent biochemical and biologi-
cal selective forces that has shaped such codon usage bias [53]. In the 
study, we showed that the mean CpG relative abundance in the coronavi-
rus genomes is markedly suppressed [53]. However, we observed that only 
CpG containing codons in the context of purine-CpG (ACG and GCG), 
pyrimidine-CpG (UCG and CCG) and CpG-purine (CGA and CGG); but 



not CpG-pyrimidine (CGU and CGC); are suppressed. However, when 
trinucleotide frequencies were analyzed in the 19 coronavirus genomes, 
all the eight trinucleotides with CpG were suppressed [53]. These indicate 
that another force that has led to an increase use of CGU and CGC as 
codons for arginine, but does not act on trinucleotides over the whole ge-
nome in general, is probably present. Furthermore, this force is probably 
unrelated to the relative abundance of the corresponding tRNA molecules 
in the hosts of the coronaviruses, as the pattern of bias in the hosts is not 
the same as that in the coronaviruses.

In addition to CpG suppression, marked cytosine deamination is also 
observed in all the 19 coronavirus genomes [53]. Using the six amino acids 
that are only encoded by NNC or NNU (asparagine, histidine, aspartic acid, 
tyrosine, cysteine and phenylalanine), hence excluding most other pressures 
that may affect the relative abundance of cytosine and uracil, it was ob-
served that all NNU are markedly over represented with usage fractions of 
more than 0.700, whereas the usage fractions of all NNC are less than 0.300 
[53]. For all codons that encode the same amino acid and with either U or C 
in any position, the usage fraction of the codon that uses U is always higher 
than the one that uses C in all coronaviruses. Furthermore, the percentage 
of U showed strong inverse relationships with the percentage of C in the 
coronavirus genomes. These suggest that cytosine deamination is another 
important biochemical force that shaped coronavirus evolution.

Interestingly, among all the 19 coronaviruses, HCoV-HKU1 showed 
the most extreme codon usage bias. HCoV-HKU1 is the only coronavi-
rus that had effective number of codons outside the mean ± 2 standard 
deviations range. In addition, HCoV-HKU1 also possessed the lowest G 
+ C content, highest GC skew, lowest percentages of G and C and high-
est percentage of U among all coronavirus genomes. Furthermore, HCoV-
HKU1 showed extremely high NNU/NNC ratio of 8.835. The underlying 
mechanism for the extreme codon usage bias, cytosine deamination and G 
+ C content in HCoV-HKU1 is intriguing.

12.7 DATABASE

Rapid and accurate batch sequence retrieval is always the cornerstone and 
bottleneck for all kinds of comparative genomics and bioinformatics anal-
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ysis. During the process of batch sequence retrieval for comparative ge-
nomics and other bioinformatics analysis of the coronavirus genomes that 
we have sequenced, we encountered a number of major problems about 
the coronavirus sequences in GenBank and other coronavirus databases. 
First, in GenBank, the non-structural proteins encoded by ORF1ab are not 
annotated. Second, in all databases, the annotations for the non-structural 
proteins encoded by ORFs downstream to ORF1ab are often confusing 
because they are not annotated using a standardized system. Third, mul-
tiple accession numbers are often present for reference sequences. These 
problems will often lead to confusion during sequence retrieval. Fourth, 
coronaviruses, especially SARSr-CoV, amplified from different speci-
mens may contain the same gene or genome sequences, which will lead 
to redundant work when they are analyzed. In view of these problems, we 
have developed a comprehensive database, CoVDB, of annotated corona-
virus genes and genomes, which offers rapid, efficient and user-friendly 
batch sequence retrieval and analysis [54]. In CoVDB, first, annotations 
on all non-structural proteins in the polyprotein encoded by ORF1ab of 
every single sequence were performed. Second, annotation was performed 
for the non-structural proteins encoded by ORFs downstream to ORF1ab 
using a standardized system. Third, all sequences with identical nucleotide 
sequences were labeled and one can choose to show or not to show strains 
with identical sequences. Fourth, this database contains not only complete 
coronavirus genome sequences, but also incomplete genomes and their 
genes. This is useful because some genes of coronaviruses, such as Pol, S 
and N, are sequenced much more frequently than others because they are 
either most conserved or least conserved, and therefore are particularly 
important for primers design for RT-PCR assays and evolutionary studies.

12.8 CONCLUDING REMARKS

After the SARS epidemic, there has been a marked increase in the number 
of coronaviruses discovered and coronavirus genomes being sequenced. 
This increase in the number of coronavirus species and genomes, a com-
prehensive and user-friendly database for efficient sequence retrieval, and 
the ever improving bioinformatics tools have enabled us to perform mean-
ingful genomic, phylogenetic, evolutionary rate and divergence, recom-



bination, and other bioinformatics analyses on the Coronaviridae family. 
Three genera, Alphacoronavirus, Betacoronavirus and Gammacoronavi-
rus, have been used to replace the traditional group 1, 2 and 3 coronavi-
ruses. A fourth genus, Deltacoronavirus, which includes BuCoV HKU11, 
ThCoV HKU12 and MunCoV HKU13, is likely to emerge. Under this 
new classification system, bat coronaviruses dominate the Alphacorona-
virus and Betacoronavirus genera and bird coronaviruses dominate the 
Gammacoronavirus and Deltacoronavirus genera. This huge diversity of 
coronaviruses in bats and birds has made them excellent gene pools for 
coronaviruses in these four genera [55].
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13.1 INTRODUCTION

Novel DNA sequencing techniques, referred to as “next-generation” se-
quencing (NGS), provide high speed and throughput that can produce an 
enormous volume of sequences. The most important advantage provided 
by these platforms is the determination of the sequence data from single 
DNA fragments of a library that are segregated in chips, avoiding the need 
for cloning in vectors prior to sequence acquisition.

The fi rst next-generation high-throughput sequencing technology, the 
454 FLX pyrosequencing platform (http://www.454.com/), which was de-
veloped by 454 Life Sciences and later bought by Roche, became available 
in 2005. In early 2007, Illumina released the Genome Analyzer (http://
www.illumina.com), developed by Solexa GA, and more recently, SOL-
iD was released by Applied Biosystems (http://www.appliedbiosystems.

http://www.appliedbiosystems.com


com). This fi eld is in rapid expansion and novel and improved platforms 
are continuously being developed and released, like Heliscope by Heli-
cos (http://www.helicosbio.com/), Ion Torrent PGM by Life Technologies 
(http://www.iontorrent.com/) and a real-time sequencing platform by Pa-
cifi c Biosciences (http://www.pacifi cbiosciences.com/).

While the platform developed by Pacifi c Biosciences, as well as other 
novel sequencing platforms, are referred as “third-generation” because 
they sequence processively single large DNA molecules without the need 
to halt between read steps, 454 pyrosequencing, Illumina GA and SOLiD 
methods represent the “second generation” systems, able to sequence pop-
ulations of amplifi ed template-DNA molecules with a typical “wash-and-
scan” technique [1]. Given these criteria, Ion Torrent PGM and Heliscope 
sit between “second-” and “third-generation” technologies, since they do 
not completely fulfi ll the features assigned to each category.

These NGS methods have different underlying biochemistries and dif-
fer in sequencing protocol (sequencing by synthesis for 454 pyrosequenc-
ing, Illumina GA, Ion Torrent PGM and Heliscope, sequencing by liga-
tion for SOLiD), throughput, and for sequence length (Table 1). Thus, the 
SOLiD system may be more suitable for applications that require a very 
high throughput of sequences, but not long reads, such as whole genome 
re-sequencing or RNA-sequencing projects, while both 454 and Illumina 
provide data suitable for de novo assembly and the relative long length of 
454 FLX (and its smaller version GS Junior) reads allows deep sequencing 
of amplicons, with applications in microbial and viral metagenomics and 
analysis of viral quasispecies, as described in this review. The technical 
features of NGS methods (reviewed in refs. [2,3]) will not be described 
in this review, which is focused on the diagnostic applications of NGS in 
clinical virology.

13.2 APPLICATIONS OF NGS TECHNOLOGIES TO DIAGNOSTIC 
VIROLOGY

NGS technologies are currently used for whole genome sequencing, in-
vestigation of genome diversity, metagenomics, epigenetics, discovery of 
non-coding RNAs and protein-binding sites, and gene-expression profiling by 
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TABLE 1: Features of “next-generation” sequencing (NGS) platforms.

Maximum  
Throughput 
Mb/run

Mean Length 
(nucleotide)

Error 
rate*

Applications Main source of 
errors

454 FLX 700 ~800 (for 
shotgun 
experiments) 
~400 (for 
amplicon 
experiments)

10−3–10−4 De novo genome 
sequencing and 
resequencing, 
target resequenc-
ing, genotyping, 
metagenomics

Intensity cutoff, 
homopolymers, 
signal cross-talk 
interference 
among neighbors, 
amplification, 
mixed beads

Illumina 6,000 ~100 10−2–10−3 Genome 
resequencing, 
quantitative 
transcriptomics, 
genotyping, 
metagenomics

Signal interference 
among neighbor-
ing clusters, homo-
polymers, phasing, 
nucleotide label-
ing, amplification, 
low coverage of 
AT rich regions

SOLiD 20,000 ~50 10−2–10−3 Genome 
resequencing, 
quantitative 
transcriptomics, 
genotyping

Signal interference 
among neighbours, 
phasing, nucleo-
tide labeling, 
signal degradation, 
mixed beads, low 
coverage of AT 
rich regions

Helicos 21,000–
35,000

~35 10−2 Non amplifiable 
samples, PCR 
free and unbiased 
quantitative 
analyses

Polymerase em-
ployed, molecule 
loss, low intensi-
ties

Ion Torrent 
PGM

1,000 ~200 3 × 10−2 De novo genome 
sequencing and 
resequencing, 
target resequenc-
ing, genotyping, 
RNA-seq on 
low-complexity 
transcriptome, 
metagenomics

Homopolymers, 
amplification

GS Junior ~35 ~400 10−3–10−4  Target 
resequencing 
(amplicons), 
genotyping

Intensity cutoff, 
homopolymers, 
signal cross-talk 
interference 
among neighbors, 
amplification, 
mixed beads

* Error rate considering only substitutions and not insertions/deletions.



RNA sequencing (reviewed in refs. [2–6]). Typical applications of NGS 
methods in microbiology and virology, besides high-throughput whole ge-
nome sequencing, are discovery of new microorganisms and viruses by 
using metagenomic approaches, investigation of microbial communities 
in the environment and in human body niches in healthy and disease con-
ditions, analysis of viral genome variability within the host (i.e., quasi-
species), detection of low-abundance antiviral drug-resistance mutations 
in patients with human immunodeficiency virus (HIV) infection or viral 
hepatitis, as outlined in this review article.

13.2.1 DETECTION OF UNKNOWN VIRAL PATHOGENS AND 
DISCOVERY OF NOVEL VIRUSES

The human population is exposed to an increasing burden of infectious 
diseases caused by the emergence of new previously unrecognized vi-
ruses. Climate changes, globalization, settlements near animal and live-
stock habitats, and the increased number of immunocompromised people 
probably contribute to the emergence and spread of new infections [7]. 
In addition, several clinical syndromes are suspected to be of viral etiol-
ogy, but the causing agent cannot be isolated and recognized by traditional 
culture and molecular methods. Thus, there is the need to improve meth-
ods for the identification of unsuspected viral pathogens or new viruses. 
Subtractive techniques, such as representational difference analysis or 
random sequencing of plasmid libraries of nuclease resistant fragments 
of viral genomes, have led in the past to the discovery of several viruses, 
including human herpesvirus type 8 [8], human GB virus [9], Torque Teno 
Virus [10], bocavirus [11], human parvovirus 4 [12], WU polyomavirus 
[13] and KI polyomavirus [14]. These techniques are poorly sensitive and 
time-consuming, and thus are unsuitable for large scale analysis. For these 
purposes, NGS-based methods have been developed. However, traditional 
cloning and sequencing methods can be relatively simple and sensitive for 
the discovery of new viruses when used for the analysis of otherwise sterile 
samples, and may represent an alternative to NGS. One of these methods 
is termed VIDISCA (Virus Discovery cDNA Amplified Fragment Length 
Polymorphism Analysis) and may be applied to sterile specimens, such as 
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cell culture supernatants [15]. In this method, samples are ultracentrifuged 
for viral particle enrichment and treated by DNase and RNase to digest 
away cellular nucleic acids. Capsid-protected viral nucleic acids are then 
purified, converted to double stranded DNA, digested with restriction en-
zymes and ligated to oligonucleotide adaptors, which are used as primer 
binding sites for comparative PCR [15]. This method was described origi-
nally in the context of the discovery of severe acute respiratory syndrome 
coronavirus (SARS-CoV) in 2004 [16]. Microarray-based diagnostic as-
says have also been used to characterize previously unknown viruses, such 
as SARS-CoVs [17], but require information on the genome of the virus or 
closely related viruses that are under investigation [18].

High throughput NGS techniques represent a powerful tool which can 
be applied to metagenomics-based strategies for the detection of unknown 
disease-associated viruses and for the discovery of novel human viruses 
[19,20]. Compared with microarray-based assays, NGS methods offer the 
advantage of higher sensitivity and the potential to detect the full spectrum 
of viruses, including unknown and unexpected viruses.

One of the fi rst applications of NGS for pathogen discovery was the 
investigation of three patients who died of a febrile illness a few weeks after 
transplantation of solid organs from a single donor and for whom conven-
tional microbiological and molecular tests, as well as microarray analysis 
for a wide range of infectious agents, had not been informative [21]. In this 
study, RNA was purifi ed from blood, cerebrospinal fl uid and tissue speci-
mens from transplant recipients and, after digestion with DNase to elimi-
nate human DNA, RNA was reverse-transcribed and amplifi ed with random 
primers. Amplifi cation products were pooled and sequenced with the use of 
the 454 pyrosequencing platform. After subtraction of sequences of verte-
brates and highly repetitive sequences, contiguous sequences were assem-
bled and compared with motifs represented in databases of microbes, lead-
ing to the identifi cation of putative protein sequences which were consistent 
with an Old World arenavirus. Additional sequence analysis showed that 
it was a new arenavirus related to lymphocytic choriomeningitis viruses. 
Further serological and immunohistochemical analyses documented that the 
virus was transmitted through organ transplantation [21].

A similar strategy, based on unbiased high-throughput sequencing us-
ing 454 pyrosequencing for the direct diagnosis of viral infections in clinical 



specimens, has been used in different diagnostic settings, such as the in-
vestigation of patients during seasonal infl uenza and norovirus outbreaks 
[22], the identifi cation of an astrovirus as a causative agent for encephalitis 
in a boy with agammaglobulinemia, after conventional methods had failed 
to identify an infectious agent [23], and the identifi cation of a hemorrhagic 
fever-associated arenavirus from South Africa (Lujo virus) [24].

When implemented into virus-discovery methods based on shotgun se-
quencing, next-generation technologies greatly enhance turnaround time 
and sensitivity. For example, the 454 system was implemented into a virus 
discovery assay based on an improved version of the VIDISCA protocol 
to minimize rRNA contamination [25]. Likewise, the association of NGS 
techniques with rolling circle amplifi cation (RCA), another method for 
virus discovery, could greatly increase its performance. RCA employs the 
PhiX29 polymerase to selectively amplify small double stranded DNA 
(dsDNA) molecules and is used to amplify circular genomes of DNA 
viruses and bacteria plasmids [26]. Recently, RCA led to the identifi ca-
tion and whole genome sequencing of novel human papillomaviruses and 
polyomaviruses [27], including human polyomaviruses 6 and 7 (HPyV6 
and HPyV7), detected in cutaneous swab specimens of healthy persons 
[28], and trichodysplasia spinulosa–associated polyomavirus (TSPyV), 
detected in skin lesions from immunocompromised patients [29].

Besides 454 pyrosequencing, short-read-based metagenomic methods 
using the Illumina GA platform have also been used to detect unknown 
viruses in clinical specimens. The Illumina GA platform allowed to iden-
tify infl uenza A viruses from swab specimens and de novo assembly of 
its genome [30–32]. It also led to the detection of viral pathogens in na-
sopharyngeal aspirate samples from patients with acute lower respiratory 
tract infections [33], such as a new enterovirus, named enterovirus 109 
(EV109) detected in a cohort of Nicaraguan children with viral respiratory 
illness [34].

A comparative study of the analytical sensitivity of the two platforms, 
454 pyrosequencing and Illumina GA, for the detection of viruses in 
biological samples was done on a set of samples which were artifi cially 
spiked with eleven different viruses [35]. The Illumina method had a much 
greater sensitivity than 454, approaching that of optimized quantitative 
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real-time PCR. However, at low viral concentration in the specimen, the 
number of reads generated by the Illumina platform was too small for de 
novo assembly of viral genome sequences [35].

Vector-borne viruses and zoonotic viruses represent another impor-
tant and challenging fi eld for viral discovery. The feasibility of detect-
ing arthropod-borne viruses was explored in Aedes aegypti mosquitoes 
experimentally infected with dengue virus and pooled with noninfected 
mosquitoes to simulate samples derived from ongoing arbovirus sur-
veillance programs [36]. Total RNA was purifi ed from mosquito pools, 
reverse-transcribed using random primers and subjected to 454 pyrose-
quencing, which led to the correct identifi cation of infected mosquito 
pools [36].

Another interesting strategy to discover arthropod-borne viruses ex-
ploits the property of invertebrates to respond to infection by processing 
viral RNA genomes into siRNAs of discrete sizes. A recent study on small 
RNA libraries sequenced by NGS platforms [37] showed that viral small 
silencing RNAs produced by invertebrate animals are overlapping in se-
quence and can assemble into long contiguous fragments of the invad-
ing viral genome. Based on this fi nding, an approach of virus discovery 
in invertebrates by deep sequencing and assembly of total small RNAs 
was developed and applied to the analysis of contigs (i.e., a contiguous 
length of genomic sequences in which the order of bases is known to a 
high confi dence level) assembled from published small RNA libraries. 
Five previously undescribed viruses from cultured Drosophila cells and 
adult mosquitoes were discovered, including three with a positive-strand 
RNA genome and two with a dsRNA genome [37]. This strategy for virus 
discovery based on deep sequencing of small RNAs has been also success-
fully used in plant virology [38].

Bats are reservoirs for emerging zoonotic viruses that cause diseases 
in humans and livestock, including lyssaviruses, fi loviruses, paramyxovi-
ruses, and SARS-CoV. In a surveillance study focused on the discovery of 
bat-transmitted pathogens, gastrointestinal tissue obtained from bats was 
analyzed by coronavirus consensus PCR and unbiased high-throughput 
pyrosequencing that revealed the presence of sequences of a new corona-
virus, related to those of SARS-CoV [39].



13.2.2 DETECTION OF TUMOR VIRUSES

Computational subtraction analysis of data obtained using conventional 
shotgun sequencing methods has been used to identify viral sequences 
(e.g., HBV, HCMV, human papillomaviruses 18 and 16, HHV8, HCV, 
EBV and human spumavirus) in EST libraries derived from normal and 
cancerous tissues [40] and in post-transplant lymphoproliferative disorder 
tissue [41]. In these studies, computational subtraction analysis relied on 
sequence data gathered for other purposes as the yield of viral sequences 
was very low due to the predominance of human sequences. However, 
exploiting the great amount of sequencing data achievable by NGS meth-
ods, computational subtraction analysis could become a method of choice 
for viral discovery. This approach has been used for the discovery of a 
new polyomavirus associated with most cases of Merkel cell carcinoma 
(MCC) [42]. MCC is a rare and aggressive human skin cancer that typical-
ly affects elderly and immunosuppressed individuals, a feature which was 
suggestive of an infectious origin. RNA was purified from MCC samples 
and analyzed by 454 pyrosequencing. Digital transcriptome subtraction of 
all human sequences led to the detection of a fusion transcript between a 
human receptor tyrosine phosphatase and a Large T antigen sequence re-
lated to murine polyomaviruses. This sequence was used as starting point 
for whole genome sequencing and characterization of this previously un-
known polyomavirus that was called Merkel cell polyomavirus (MCPyV). 
The presence of the virus in 80% MCC tissues but only in about 10% of 
control tissues from various body sites, including the skin, and the demon-
stration that, in MCPyV-positive MCCs, viral DNA was integrated within 
the tumor genome in a clonal pattern, strongly suggested the etiological 
role of the virus in the pathogenesis of MCC [42].

In a NGS study of the skin virome of a patient with MCC in compari-
son with healthy controls [43], another human polyomavirus strain was 
detected, which was nearly identical to the recently discovered HPyV9 
polyomavirus [44] and closely related to the lymphotropic polyomavirus 
(LPV). Likewise, unbiased high-throughput sequencing or deep sequenc-
ing of amplicons generated with consensus primers targeting regions of 
the viral genome conserved within viral families, like the tumor-associat-
ed Polyomaviridae and Papillomaviridae, allowed the discovery and char-
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acterization of many new polyomavirus and papillomavirus genotypes in 
several animal species.

The Papillomaviridae family includes several viral species and at 
least 189 completely characterized papillomavirus types and putative new 
types are continuously found [45]. High throughput 454 pyrosequencing 
of amplicons generated by consensus PCR of a conserved region of viral 
genome was used to detect and genotype HPV in cervical cytology speci-
mens [46]. The method allowed the detection of HPV types which were 
present in low amount in multiple infections and had the potentiality to 
detect a broad spectrum of HPV types, subtypes, and variants [46]. A simi-
lar approach was used to detect and genotype cutaneous HPV types in a 
large series of squamous cell carcinoma of the skin and other skin lesions 
[47]. Several different HPV types were detected, including novel putative 
cutaneous HPVs [47].

Investigation of retrovirus and retroviral vector integration sites in 
host cell chromosomes is another fi eld of viral oncology which received 
a great contribution from NGS technologies. The use of viral vectors that 
integrate in host genome for gene transfer may cause malignant transfor-
mation due to activation of host proto-oncogenes or inactivation of tu-
mor-suppressor genes, as a consequence of viral vector integration within 
these genes [48–50]. Deep sequencing technology has been used to map 
the integration sites of retroviruses and HIV [51], as well as retroviral 
and HIV-based vectors for gene therapy and cell reprogramming [52–54]. 
Deep sequencing methods for detection of retrovirus integration are based 
on 454 pyrosequencing of products of ligation-mediated PCR (LM-PCR) 
[55,56] or linear amplifi cation–mediated PCR (LAM-PCR) [57]. Both 
LM-PCR and LAM-PCR use restriction enzymes to fragment the DNA of 
interest containing proviruses. Then, digested DNA is ligated with a com-
patible linker and amplifi ed by PCR using primers that anneal in the LTR 
and in the linker sequence. Nested primers containing linkers for the 454 
protocol are then used for a second PCR, which is processed by 454 high-
throughput sequencing. A LAM-PCR method without the use of restric-
tion enzymes was also developed for high throughput sequencing [58]. 
Recently, a new method was developed for recovering sites of integrated 
DNA based on the bacterial transposase MuA. The transposase is used to 
introduce adaptors into genomic DNA to allow PCR amplifi cation and 



analysis by 454 pyrosequencing. This method could avoid the bias asso-
ciated with restriction enzymes and recovered integration sites in a near 
random fashion. It provided a measure of cell clonal abundance, which 
is crucial for detecting expansion of cell clones that may be a prelude to 
malignant transformation [59].

13.2.3 CHARACTERIZATION OF THE HUMAN VIROME

The human microbiome is the entire population of microbes (i.e., bacteria, 
fungi, and viruses) that colonize the human body. Metagenomics refers to 
culture-independent studies of the collective set of genomes of mixed mi-
crobial communities and applies to explorations of all microbial genomes 
in consortia that reside in environmental niches, in plants, or in animal 
hosts, including the human body [60–62]. The “metagenome” of micro-
bial communities that occupy human body niches is estimated to have a 
gene content approximately 100-fold greater than the human genome [63]. 
These diverse and complex collections of genes encode a wide array of 
biochemical and physiological functions that may be relevant in healthy 
and disease conditions.

Metagenomics strategies are generally based on whole genome shot-
gun sequencing of nucleic acids purifi ed from a specimen. In case of bac-
teria metagenomics, analysis can be simplifi ed by exploiting universal and 
conserved targets, such as 16S rRNA genes, which have both conserved 
regions that can be targeted by PCR primers, and intervening variable se-
quences that facilitate genus and species identifi cation [60,61]. At variance, 
no conserved ubiquitous viral sequences are available for broad amplifi ca-
tion of viral genomes and methods to enrich samples with viral particles 
can only be used. In addition, viral metagenomics analyses, which have 
been applied so far mostly in environmental samples like fresh water, re-
used wastewater, and ocean water [64–67], have shown that many of the 
detected viral sequences are unique and represent unknown viral species. 
Thus, viral sequences may be missed even by shotgun sequencing [68].

A recent study [69] developed a bioinformatic annotation strategy for 
identifi cation and quantitative description of human pathogenic viruses in 
virome data sets and applied this strategy to annotate sequences of viral 
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DNA and RNA (cDNA) extracted from sewage sludge residuals resulting 
from municipal wastewater treatment (biosolids), which were obtained by 
454 pyrosequencing. In this experimental model, within the 51,925 an-
notated sequences, 94 DNA and 19 RNA sequences were identifi ed as hu-
man viruses. Virus diversity included environmentally transmitted agents 
such as parechovirus, coronavirus, adenovirus and aichi virus, as well as 
viruses associated with chronic human infections, such as human herpes-
viruses and hepatitis C virus [69].

In the diagnostic setting, metagenomic approaches could be used for 
systematic analysis of samples collected from patients with unexplained 
illness, especially in the context of outbreaks and epidemics [70,71]. As 
mentioned in the above section, application of high throughput NGS 
methods in viral metagenomics can greatly enhance the chances to iden-
tify viruses in clinical samples, including viruses that are too divergent 
from known viruses to be detected by PCR or microarray techniques (re-
viewed in ref. [20]). An attractive application of metagenomic approaches 
is the study of infl uenza, given the constant threat of antigenic drift and 
shift. Deep sequencing strategies can be used to monitor the emergence 
of mutations that confer virulence or resistance to antiviral drugs, to de-
tect infl uenza viruses in clinical samples, and to identify viral quasispe-
cies [22,31,32]. In addition, deep sequencing of clinical samples allows to 
identify and characterize not only novel pathogens but also the microbiota 
and host response to infection [32].

The study of the human virome includes also the description of viral 
communities—including bacteriophages—in human body and their re-
lationship with health and disease. Examples are the characterization of 
fecal viromes (mainly phages) and their relations with bacterial metage-
nome [72] and the characterization of the virome in the skin of healthy 
individuals [28].

13.2.4 FULL-LENGTH VIRAL GENOME SEQUENCING

Like viral metagenomics, sequencing of full-length viral genomes is a dif-
ficult task due to the presence of contaminating nucleic acids of the host 
cell and other agents in viral isolates. In fact, preparation of a simple shot-



gun sequencing DNA library, the most comprehensive approach, or of a 
library of cDNA synthesized from RNA with random priming, results in 
a huge amount of host specific instead of a comprehensive representa-
tion of the viral sequences, even in the presence of a very high viral load 
[21,31,73]. Very high throughput sequencing techniques, such as SOLiD 
platform, could be used to obtain sufficient sequence coverage [74], but 
the length of reads might be too short to allow de novo assembly of viral 
genomes and methods that provide longer reads, like 454 and Illumina 
technology, might be preferable [31,32]. Several techniques have been 
used to enrich virions or viral nucleic acids from cell culture or from host 
tissue and fluids before extracting the genomic DNA/RNA, in order to 
limit the contamination from host nucleic acids. One of these methods is 
ultracentrifugation, but this procedure may be very time-consuming and 
laborious with uncertain outcome [75]. Other methods are based on enrich-
ment of viral nucleic acids by using capture probes or PCR amplification 
targeting conserved genome segments [76,77] or, vice versa, by depletion 
of host nucleic acids by probing total RNA with labeled host nucleic acid 
[78]. Other approaches could be enrichment of dsRNA virus genomes [79] 
or circular dsDNA viral genomes by RCA [28,29].

13.2.5 INVESTIGATION OF VIRAL GENOME VARIABILITY 
AND CHARACTERIZATION OF VIRAL QUASISPECIES

High mutation rates inherent to replication of RNA viruses create a wide 
variety of mutants that are present in virus populations, which are often 
referred to as quasispecies [80]. The diffuse, “cloud-like” nature of viral 
populations allows them to rapidly adapt to changing replicative environ-
ments by selecting preexisting variants with better fitness [81,82]. Thus, 
many important virus properties cannot be explained by a mere consensus 
sequence, but require knowledge about the microvariants present in viral 
populations. These sequence variants may be critically relevant to viral 
evolution and spread, virulence, evasion of the immune response, anti-
viral drug resistance, and vaccine development and manufacture.

The use of deep sequencing data for mutation analysis in viral genomes 
has required the development of computational methods for estimation of 
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the quality of sequences and for error correction, algorithms for sequence 
alignment and haplotype reconstruction, statistical models to infer the fre-
quencies of the haplotypes in the population, for comparative analysis and 
for their visualization [83–86].

Among RNA viruses, HIV quasispecies have been extensively inves-
tigated because of their relevance for vaccine design and response to anti-
viral drug therapy [87]. Within infected individuals, HIV is highly hetero-
geneous owing to rapid turnover rates, high viral load, and a replication 
mediated by the error-prone reverse transcriptase enzyme that lacks proof-
reading activity. High variability is also the consequence of recombina-
tion, which can shuttle mutations between viral genomes and lead to major 
antigenic shifts or alterations in virulence [88]. An example of application 
of NGS for analysis of HIV quasispecies is the use of massive parallel 454 
pyrosequencing with the shotgun approach to characterize the full length 
genome of an HIV-1 BF recombinant and its quasispecies heterogeneity 
in a patient who died from multiorgan failure during seroconversion [89]. 
Another fascinating application of deep sequencing in HIV research is the 
use of the 454 pyrosequencing methods to analyze the variable regions 
of heavy and light chains of neutralizing antibodies against HIV in the 
blood obtained from HIV-1-infected individuals, in order to understand 
how broadly neutralizing antibodies develop [90]. But the most relevant 
application of NGS in HIV diagnostics is the detection of anti-viral drug 
resistant minor variants, which will be discussed in the next section.

Analysis of full-length viral genome and quasispecies was also applied 
to other RNA viruses. Deep sequencing with the Illumina platform on total 
RNAs extracted from the lung of a patient who died of viral pneumonia 
due to pandemic 2009 infl uenza A virus (A/H1N1/2009) revealed nucleo-
tide heterogeneity on hemagglutinin as quasispecies, leading to amino acid 
changes on antigenic sites which could be relevant for antigenic drift [31].

Mutations of human rhinovirus (HRV) genome were explored in a lung 
transplant recipient infected with the same HRV strain for more than two 
years [91]. Analysis of complete HRV genome sequences by both classi-
cal and Illumina ultra-deep sequencing of samples collected at different 
time points in the upper and lower respiratory tracts showed that HRV 
populations in the upper and lower respiratory tract were phylogenetically 
indistinguishable over the course of infection, likely because of constant 



viral population mixing. Nevertheless, signatures of putative adaptation to 
lower airway conditions appeared after several months of infection, with 
the occurrence of specifi c changes in the 5’UTR polypyrimidine tract and 
the VP2 immunogenic site 2 of HRV genome, which might have been rel-
evant for viral growth at lower airway conditions [91].

Populations of DNA viruses are considered less complex and variable 
when compared to RNA viruses. However, data from deep sequencing of 
DNA virus genomes have revealed that complex mixtures of viral geno-
types may be present in infected subjects and that positive selection could 
have contributed to the divergence of different strains. This is the case 
of human cytomegalovirus (HCMV), which establishes lifelong latent in-
fections in humans and may reactivate and cause severe life-threatening 
disease in immunocompromised patients. High intra-host variability of 
HCMV genome was demonstrated in lung transplant recipients by deep 
sequencing of the amplicons of three variable HCMV genes [92] and in 
neonates with congenital HCMV infection by deep sequencing of long 
range, overlapping amplicons covering the entire HCMV genome [93]. 
Since PCR amplifi cation and sequencing can introduce errors in their own, 
which could be misinterpreted as mutation or polymorphisms, deep se-
quencing studies have to develop protocols and algorithms to estimate ex-
perimental error and to fi lter false positive results. In the studies reported 
here on HCMV genome variability, experimental error rate was estimated 
by using arbitrary criteria [92] or an algorithm based on experimental 
data obtained from deep sequencing analysis of a control HCMV genome 
cloned in a BAC vector [93].

Deep sequencing showed also variability of herpes simplex virus 1 
(HSV-1) genome and allowed to demonstrate virulence genes. Using Illu-
mina high-throughput sequencing, genome sequences of both a laboratory 
strain (F) and a low-passage clinical isolate (H129) were obtained and 
compared with the available genome sequence of a more virulent isolate 
of HSV-1 (strain 17) [94]. The HSV-1 H129 strain, isolated from the brain 
of an encephalitic patient, is the only virus known to transit neural circuits 
exclusively in an anterograde direction [95]. Whole genome sequencing 
demonstrated many protein-coding variations between strains F and H129 
and the genome reference strain 17 and some genes were proposed to be 
responsible of the anterograde mutant phenotype of strain H129, includ-
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ing the neurovirulence protein ICP34.5, while a frameshift mutation in the 
UL13 kinase could account for decreased neurovirulence of strain F [94].

13.2.6 MONITORING ANTIVIRAL DRUG RESISTANCE

Deep sequencing by NGS techniques is being increasingly used in the 
clinical practice to detect low abundance drug resistant HIV variants and, 
with the recent availability of new drugs active against hepatitis C virus 
(HCV), also for the detection of HCV minor variants.

Conventional direct sequencing of RT-PCR products (referred to as 
“population sequencing“) is the gold standard in HIV resistance testing 
and is used to detect drug-resistance mutations in the molecular targets 
of HIV-1 therapy, i.e., reverse transcriptase, protease, integrase, and V3 
loop of the HIV env gene. A major limitation of direct PCR sequencing, 
however, is its inability to detect drug-resistant variants present in less 
than 20–25% of the heterogeneous virus population existing in a patient’s 
plasma sample [96]. Several studies have shown that minor drug-resistant 
variants that are not detected by population-based sequencing are clini-
cally relevant in that they are often responsible for the virological failure 
of a new antiretroviral treatment regimen [97–99].

Clonal sequencing of RT-PCR products by 454 pyrosequencing offers 
the advantage of high sensitivity for minor variants and a relatively long 
sequence length that facilitates the characterization of the linkage amongst 
resistance mutations and avoids the risk to miss mutations due to sequence 
variation around the site under investigation. The application of 454 se-
quencing-based resistance testing in clinical setting, however, requires 
careful consideration of potential technical errors that can be introduced 
in the experimental protocol and in data analysis in order to discriminate 
between experimentally introduced errors and true variants [87,100,101]. 
Data analysis issues are discussed in Section 2.9.

Several studies that employed 454 pyrosequencing for deep analysis of 
mutations in HIV protease and reverse transcriptase genes demonstrated 
the accuracy of this technique in detecting all drug-resistance mutations 
identifi ed by population sequencing, and the ability to detect low-frequen-
cy mutations undetectable by population sequencing [100,102,103]. In ad-



dition, several studies demonstrated that drug-resistance mutations detect-
ed by 454 had a signifi cant impact on virological failure [103–107] while 
others did not fi nd a strong association of low-frequency mutations with 
clinical responses [108,109]. Deep sequencing using the 454 platform 
has been also applied to investigate drug-resistance mutations against the 
more recently approved integrase inhibitors and CCR5 antagonists.

Drug-resistance mutations to integrase inhibitors occur in the inte-
grase gene. These mutations were detected by deep sequencing at very 
low levels if at all prior to initiating therapy [110] and could be selected 
by previous drug pressure [111]. Resistance to CCR5 antagonists, like 
maraviroc, occur by outgrowth of CXCR4-tropic HIV variants, i.e., vi-
ruses that use the CXCR4 coreceptor [112] or via mutations in the viral 
envelope protein [113–116]. Coreceptor usage can be screened using 
phenotypic coreceptor tropism assays, based on recombinant virus tech-
nology, or genotypic tests, based on sequencing of the V3 loop of HIV 
env gene [117]. Phenotypic assays have good sensitivity and specifi city, 
but they are time consuming, expensive, and require special laboratory 
facilities; thus they are not convenient as diagnostic tests in clinical prac-
tice. Genotyping methods based on population sequencing represent a 
more feasible alternative, but their sensitivity for the detection of minor-
ity variants is lower than phenotypic assay (about 10–20%) and this rep-
resents a problem, since the proportion of CXCR4-tropic HIV variants 
before initiation of therapy is generally very low. In addition, the algo-
rithms used for interpretation of sequencing results may underestimate 
the impact of some mutations in viral tropism [118]. Deep sequencing 
by using 454 has been used in several studies [119–123], including large 
clinical trials, to determine viral tropism and has been demonstrated to 
be comparable in sensitivity and specifi city with phenotypic assays in 
detecting CXCR4-using variants. According to data reported to date, the 
clinical threshold for detection of CXCR4-tropic variants might range 
between 2–10% [118]. With this threshold, 454 pyrosequencing at 1% 
sensitivity for minority variants can represent a valuable diagnostic tool 
for viral tropism testing. In addition, deep sequencing of relatively long 
reads allows defi ning the contribution of multiple mutations in a single 
viral genome. This information could improve the performance of inter-
pretation algorithms as compared with population sequencing.
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Deep sequencing based on the 454 technology has been also applied for 
the detection of nucleoside and nucleotide reverse-transcriptase inhibitor 
resistance in HBV. The NGS method was more sensitive for the detection 
of rare HBV drug resistance mutations than conventional methods based 
on population sequencing or reverse hybridization [124,125]. In addition, 
deep sequencing allowed to identify G-to-A hypermutation mediated by 
the apolipoprotein B mRNA editing enzyme, which was estimated to be 
present in 0.6% of reverse-transcriptase genes [124].

Finally, with the availability of new drugs targeting HCV protease and 
polymerase, the experience of drug-resistance mutation and quasispecies 
analysis achieved with HIV is being translated to HCV. Also for HCV, 
deep sequencing technologies seem a promising tool for the study of mi-
nority variants present in the HCV quasispecies population at baseline and 
during antiviral drug pressure, giving new insights into the dynamics of 
resistance acquisition by HCV [126,127].

13.2.7 EPIDEMIOLOGY OF VIRAL INFECTIONS AND VIRAL 
EVOLUTION

High throughput sequencing is being used to investigate the epidemiol-
ogy of viral infections and viral evolution, addressing issues such as viral 
superinfection (e.g., HIV superinfection, which occurs when a previously 
infected individual acquires a new distinct HIV strain) [128], tracing the 
evolution and spread of viral strains, such as the emergence, evolution and 
worldwide spread of HIV [88], tracing the transmission of viruses among 
individuals [129], or modeling the evolution of viruses within the host and 
the mechanism of immune escape, balanced with replication fitness, such 
as in the case of HIV and HCV infection [127,130,131].

13.2.8 QUALITY CONTROL OF LIVE-ATTENUATED VIRAL 
VACCINES

Intrinsic genetic instability of RNA viruses may lead to the accumulation 
of virulent revertants during manufacture of live viral vaccines, requiring 



rigorous quality control to ensure vaccine safety. High throughput deep 
sequencing methods have been proposed as tools for monitoring genetic 
consistency of live viral vaccines. Deep sequencing was used to analyze 
lots of oral poliovirus vaccine and the detected neurovirulence mutations 
were identical to the mutation detected with the standard method based on 
PCR and restriction enzyme cleavage [132]. Patterns of mutations present 
at a low level in vaccine preparations were characteristic of seed viruses 
used for their manufacture and could be used for identification of individ-
ual batches [132]. Deep sequencing was also used to examine eight live-
attenuated viral vaccines, i.e., trivalent oral poliovirus, rubella, measles, 
yellow fever, varicella-zoster, multivalent measles/mumps/rubella, and 
two rotavirus live vaccines [133]. The method allowed identification of, 
not only mutations and minority variants relative to vaccine strains, but 
also sequences of adventitious viruses from the producer avian and pri-
mate cells. The results were in agreement with those obtained by using a 
panmicrobial microarray [133].

13.2.9 DATA ANALYSIS ISSUES

An aspect that should not be neglected when dealing with NGS data, is the 
bioinformatics analysis and issues concerning sequencing output. There 
are inherent strengths and weaknesses in the different platforms as report-
ed in Table 1. For example, 454 technology is well suited for small de 
novo sequencing projects and amplicon studies, given its read length out-
put that presently reaches the average length of sequences produced with 
Sanger method. The main issue to be aware of concerns the homopolymer 
length, due to signal thresholding of the incorporated nucleotides. SOLiD 
platform is not presently suitable for amplicon studies due to the short read 
length, but exhibits an extremely high throughput capacity. Illumina has a 
superior read length and is not affected by homopolymers but, as SOLiD, 
shows low coverage of AT rich regions [134]. Other platforms present in 
Table 1 (with the exclusion of the GS Junior, which shares the same fea-
tures of 454 FLX but has a lower throughput) are still in development and 
not yet evaluated in their diagnostic potential.
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Besides the specifi c limits of the different platforms, other common 
issues should be taken into account and carefully considered. The fi rst 
sources of problems are certainly chimerical sequences, point muta-
tions and insertions/deletions which occur during reverse transcription, 
PCR amplifi cation or sequencing itself. In addition, PCR amplifi cation 
bias might impact the relative frequencies of viral variants. The process 
of “data cleaning” consists of three main steps: sequence fi ltering, align-
ment and error correction, for which a panel of methods has been proposed 
[84,135,136]. Briefl y, the fi ltering phase removes the low-quality sequenc-
es from the dataset, while the error correction separates true variants from 
those due to experimental noise. This step is based on the idea that errors 
are randomly distributed with low frequency, while sequences with real 
mutations can be clustered and their abundance quantifi ed. A cluster of 
reads presenting the same mutations represents a haplotype and the size of 
the cluster is the haplotype frequency. Global haplotypes are more diffi cult 
to be identifi ed, since the reads must be assembled in larger contigs and 
a unique solution in aligning overlapping reads is not guaranteed. To this 
respect, the advantage of 454 platform for haplotype reconstruction stud-
ies is evident, thanks to its longer reads output.

As concerns the data analysis step, a multitude of software has been de-
veloped for very different applications of NGS. Nevertheless, if on the one 
hand this availability of methods greatly eases the task, on the other hand 
available algorithms for both genome assembly and amplicon analysis 
present limitations or drawbacks [137] which require custom made script-
ing and in-house resolution of bioinformatics problems caused by specifi c 
needs [46]. The direct consequence is that data analysis can be no more 
sustained by the wet-lab researcher alone, but requires the acquisition of 
computer skills and bioinformatics expertise.

13.3 CONCLUSIONS

Next-generation high throughput sequencing technologies have become 
available in the last few years and are in continuous development and 
improvement. They have been widely used in many projects, e.g., whole 



genome sequencing, metagenomics, small RNA discovery and RNA se-
quencing. Their common feature is the extremely high throughput data 
generation. As a result, new issues have to be addressed in order to exploit 
the full potential of these new instruments: firstly, the data analysis step 
has become very time consuming and requires a competent amount of 
manpower and expertise in bioinformatics; secondly, adequate computing 
resources are necessary to handle the data produced.

Diagnostic virology is one of the most successful applications for NGS 
and exciting results have been achieved in the discovery and characteriza-
tion of new viruses, detection of unexpected viral pathogens in clinical 
specimen, ultrasensitive monitoring of antiviral drug resistance, investiga-
tion of viral diversity, evolution and spread, and evaluation of the human 
virome. With the decrease of costs and improvement of turnaround time, 
these techniques will probably become essential diagnostic tools in clini-
cal routines.
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14.1 INTRODUCTION

Cancer is a genetically and clinically diverse disease. The concept of early 
detection has attracted the attention of both physicians and researchers 
for decades and thus evolved the concept of “Biomarker” [1]. According 
to the definition of National Cancer Institute (USA), “biomarker is a bio-
logical molecule found in blood, other body fluids, or tissues that is a sign 
of a normal or abnormal process, or of a condition or disease.” The ideal 
biomarker should be easily detectable, highly sensitive and specific for its 
target phenotype as well as economically feasible [2]. A biomarker may be 
used to monitor the body responses to a treatment for a disease or condi-
tion. It is also referred to as a molecular marker or biosignature. It can be 



any molecule like DNA, RNA, proteins, or metabolites [3]. Although the 
survival rate of cancer patients has increased in the last 20 years, newer 
diagnostic methods with improved sensitivity and specificity are essential 
for the proper detection and prognosis of this fatal disease.

Discovery of biomarkers through the analysis of patient serum or tis-
sue is a conventional approach being used since the beginning of diagnosis 
of cancer, but the broad range of serum proteome and availability of pa-
tient tissue samples are the major hurdles. Thus, the use of tumor cell lines 
becomes an attractive option for the study and discovery of candidate bio-
markers since the cells possess a rich source of secreted as well as cellular 
proteins. Secretome comprising the secretory proteins in the culture me-
dia, also referred to as conditioned media (CM), serve as a potent source 
for biomarkers due to ease and effectiveness of detection; however, nowa-
days even cellular proteins are also providing important information about 
disease conditions. Thus, this model system can serve as an early provider 
of potential biomarkers. An overview of tissue culture-based model sys-
tem for candidate cancer biomarker discovery is represented in Figure 1. A 
number of studies have used the cell culture-based system to identify the 
potential biomarkers [4–6]. The clinical signifi cance of using cell lines to 
understand biological functions lies in the fact that they can be examined 
through various techniques and that they display the same heterogeneity 
as the primary tumors as well as different grades [7, 8].

We have witnessed a tremendous improvement in the past decade in 
the fi eld of high-throughput research that heralds the initiation of a new 
era in the area of biological science research. Almost all proteomic bio-
marker discovery platforms use mass spectrometry (MS) as the central 
technique in association with other proteomic approaches. MS has certain 
advantages like prediction of molecular mass with the highest specifi city 
and sensitivity with the use of smallest amount of sample [9–11]. Different 
mass spectrometry-based proteomic approaches have been used to iden-
tify biomarkers from various sources and are broadly classifi ed into two 
categories: gel-based (2-DE and 2D-DIGE) and gel-free (SILAC, iTRAQ) 
techniques [12–14]. Detection of biomarkers through two-dimensional 
gel electrophoresis (2-DE) is the most widely used gel-based approach 
[15]. Improvements over the years have provided us with a more sensitive 
and high-throughput gel-based technique termed as two-dimensional dif-
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FIGURE 1: An overview of biomarker discovery using tissue culture. Cancer cells are 
cultured in plates. The CM as well as cells is collected separately. Extracted proteins 
from each fraction are processed for either in-gel or in-solution digestion followed by the 
detection of peptides by mass spectrometric approach. Data analysis leads to detection of 
candidate biomarkers.

ference gel electrophoresis (2D-DIGE). This is based on the differential 
excitation-emission properties of fl uorescent dyes such as Cy2, Cy3, and 
Cy5 [16]. Apart from the gel-based techniques, gel-free techniques have 
been dominating the fi eld of biomarker discovery in the last decade. Stable 
isotope labelling by amino acids in cell culture (SILAC), which relies on 
the incorporation of amino acids with substituted stable isotopic nuclei 
such as H2, C13, and N15, is highly suitable for tissue culture-based model 
system [17]. Another very sensitive gel free technique known as isobaric 
tags for relative and absolute quantitation (iTRAQ) is also a method of 
choice [18].

Moreover, these MS-based proteomic tools have advanced satisfyingly 
since the last decade and hence have become capable of simultaneously 
identifying thousands of proteins even from very small amounts. MS ad-
vancement has helped enormously in the identifi cation and delivery of 
candidate biomarkers for cancer diagnosis, prognosis and monitoring of 
treatment regimen.



14.2 MASS SPECTROMETRY-BASED PROTEOMICS

MS has increasingly become the method of choice for all the proteomic 
approaches available to date. As the name indicates, “mass spectrome-
try” determines the molecular mass of a charged particle by measuring 
its mass-to-charge (m/z) ratio. Basically, a mass spectrum is a plot of ion 
abundance versus m/z. A mass spectrometer consists of an ion source that 
converts molecules to ionized analytes, a mass analyser that resolves ions 
according to m/z ratio, and a detector that registers the number of ions at 
respective m/z value. The mass analyser depends on three key parameters: 
sensitivity, resolution, and mass accuracy. The sensitivity, resolution, and 
accuracy of advanced mass spectrometers allow the detection of femto-
gram levels of individual proteins in complex mixtures. As recognized by 
the 2002 Nobel Prize in Chemistry, innovation of electrospray ionization 
(ESI) and matrix-assisted laser desorption/ionization (MALDI) techniques 
has made it possible to ionize big molecules such as proteins, peptides, 
and nucleotides for mass spectrometric analysis. ESI generates ions at at-
mospheric pressure by injecting a solution-based sample through a small 
capillary (Figure 2(a)). MALDI produces ions by pulsed-laser irradiation 
of a sample which is cocrystallized with a solid matrix that can absorb 
the wavelength of light emitted by the laser (Figure 2(b)). Protonation or 
deprotonation is the main source of charging for the ions generated in ESI/
MALDI. MS-based proteomics is a widely used approach to find protein 
sequence from unknown samples by correlating the sequence ions gener-
ated from tandem mass spectral data with sequence information available 
in protein databases. MS-based proteomics analyses of complex protein 
mixture usually require a starting amount in the range of 0.1–10 μg, de-
pending on the experimental setup and the type of mass spectrometer used. 
ESI is playing an increasingly conspicuous role in the study of the protein 
structure, folding, and noncovalent interactions [19]. Recently, MALDI 
imaging has allowed biomolecular profiling of tissue sections and single 
cells [20]. In combination with chromatographic separation techniques, 
MS is playing an important role in discovering the biomarkers for vari-
ous diseases. Many research groups have been using MS-based techniques 
in order to identify potential cancer biomarkers for diagnostic as well as 
therapeutic purposes [21–25].
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FIGURE 2: (a) A schematic representation of ESI-MS—solvent along with sample flows 
from the needle with electrical potential generating charged droplets. The droplets carry 
the sample, and they are desolvated by applying heat and nebuliser gas to produce ions. 
These ions are now separated according to m/z ratio in the mass analyzer and registered 
by detector. (b) A schematic representation of MALDI-MS—the sample is mixed with 
the matrix and allowed to crystalize on the MALDI plate, when the laser hits the sample-
matrix mixture on the plate, matrix absorbs the energy of the laser to get vaporized along 
with samples. Next, the charge exchange takes place from matrix and sample ions are 
generated.

14.3 MASS SPECTROMETRY-BASED QUANTITATIVE PROTEOMIC 
STRATEGIES TOWARDS BIOMARKER DISCOVERY

Cancer remains a major cause of mortality worldwide despite the progress 
in detection, diagnosis, and therapy. Early diagnosis of cancer improves 
the likelihood of successful treatment and can save many lives. Thus, early 
diagnostic biomarkers are highly important for detection and diagnosis in 
cancer, but due to the lower sensitivity and lack of specific biomarkers, 
there is an urgent need to discover new and better biomarkers that would 
be helpful in improving cancer diagnosis, prognosis and treatment. Pro-
teomics is the most powerful technique which can help to discover novel 
candidate biomarkers for cancer. Current progress in proteomics has been 
largely due to recent advancements in MS-based technologies. This pow-
erful MS-based quantitative proteomic technologies can aid in the identi-
fication of all differentially expressed proteins and their posttranslational 
modifications during cancer progression which can be used as biomarkers 
for early diagnosis and monitoring disease treatment in cancers. Moreover, 
the candidate biomarkers for other diseases, like diabetes, cardiovascular, 



and so forth, are also discovered with the help of these techniques [26, 
27]. This section focuses on different mass spectrometry-based proteomic 
strategies and explores their applications in potential biomarker discovery.

14.4 2D GEL ELECTROPHORESIS (2-DE)

The 2-DE method is a primary technique regularly used in proteomic in-
vestigations [15]. In this method, extracted proteins are resolved in the 
first-dimension based on their isoelectric point (pI) followed by molecular 
weight in the second-dimension (Figure 3). The gels are then stained by ei-
ther Coomassie Brilliant Blue or silver stain to visualize the protein spots. 
Using 2-DE software, differentially expressed protein spots are excised 
and identified by mass spectrometry [28]. This approach could lead to 
separation and identification of about 2000 unique spots. Using the 2-DE, 
Braun et al. successfully identified 64 differentially regulated proteins in 
cancer by mass spectrometry and showed that microfilamental network-
associated proteins are frequently downregulated in leukocytes of breast 
cancer patients [29]. These are functionally important for all central pro-
cesses and highly relevant for all stages of tumorigenesis-like metasta-
sis [29]. Similarly, Cancemi et al. identified S100 group of proteins that 
are preferentially expressed in tumor samples than their normal counter-
part. They have used breast cancer as subject of study and established for 
the first time the importance of the S100 group of proteins as potential 
biomarkers [30].

This technique is also being routinely used for the proteomic profi l-
ing of cancer cells treated with drugs (in vitro). Strong et al. studied the 
differential regulation of mitochondrial proteome of Adriamycin-resistant 
MCF-7 breast cancer cells. They have identifi ed 156 unique proteins and 
established coproporphyrinogen III oxidase and ATP synthase alpha chain 
to be responsible for the chemotherapeutic resistance [31]. Similar kind of 
study has been carried out by Lee and coworkers to show hnRNPA2 and 
GDI2 proteins to be associated with paclitaxel resistance in ovarian cancer 
cell lines [32]. They have established a paclitaxel resistance subline SKpac 
from the sensitive counterpart SKOV3 followed by quantitative proteomic 
analysis and further validated their fi ndings by western blotting. These 
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examples demonstrate the potency of 2-DE approach in the discovery of 
novel proteins involved in tumorigenesis and chemotherapeutic drug re-
sponse. However, 2-DE still has its limitations like the inability to resolve 
too basic, too acidic, and hydrophobic proteins. The ampholytes used for 
the generation of pH gradient are not stable at extreme acidic and basic pH 
and are therefore unsuitable for use. In addition, the membrane proteins 
due to their highly hydrophobic nature pose problems in solubilisation, 
making them diffi cult to resolve. Reproducibility and low relative quanti-
fi cation accuracy are other major obstacles which arise due to factors such 
as run to run variation and limitation of the detection methods available 
[33]. Requirement of huge amount of sample and inability to detect low 
abundance proteins is also a major drawback. Though 2-DE has its limita-
tions, still it will be a method of choice for proteomic study because of its 
robustness and simplicity.

14.5 2D DIFFERENCE GEL ELECTROPHORESIS (2D-DIGE)

The 2D-DIGE method is an improved version of 2-DE technique. In 
this technique, two different protein samples (control and diseased) 
and one internal control (mixture of control and diseased sample in 
equal proportion) are labelled with any of the three fluorophores: Cy2, 
Cy3, or Cy5. These fluorophores have the identical charge and molecu-
lar mass but unique fluorescent properties. This allows us to discrimi-
nate them during scanning using appropriate optical filters [16, 34]. 
The labelled samples are then mixed together and separated on a single 
gel. The best part of this technique is the use of the same internal pool 
for all the gels that serves as an internal control for normalization (Fig-
ure 4) [16, 34]. The gel is scanned by an advanced scanner which can 
resolve the three different wavelengths: 488 nm (Cy2), 532 nm (Cy3), 
and 633 nm (Cy5). Each of the samples generates its unique image. This 
technique eliminates gel-to-gel variation, enhances sensitivity (order 
of 4 magnitudes), and is less laborious [35, 36]. However, the sample 
source variation of 2D-DIGE is as vivid as 2-DE. This technique is 
routinely used for the discovery of candidate biomarkers as well as any 
quantitative proteomic data generation and therapeutic drug develop-



ment. Zhang et al. used this technique for the identification of differ-
entially expressed proteins between early submucosal noninvasive and 
invasive colorectal cancer [37]. They have established a Fischer-344 
rat model for the invasive and noninvasive colorectal cancer and found 
two candidates, transgelin (upregulated) and carbonic anhydrase 2 
(CSII) to play significant role in CRC. They have also validated these 
candidates through fluorescence-based quantitative polymerase chain 
reaction, western blotting and immunohistochemistry assays [37]. In 
a similar kind of study, isocitrate dehydrogenase 1 (IDH1) was de-
tected and validated as a potential biomarker for nonsmall cell lung 
carcinoma [38]. They have identified IDH1 as a potential biomarker in 
different NSCLC cell lines and further validated it using patient tissue 
samples via different techniques like western blotting, immunohisto-
chemistry, knockdown assay, and xenograft model. Although the rele-
vance of IDH1 via different genomic and molecular biology techniques 
is well established now, the basis of its potential was established by 
this kind of proteomic studies [38]. In another study, Banerjee et al. 
used 2D-DIGE in combination with MS for the identification of prog-
nostic biomarkers in glioblastoma multiforme using human astrocyte 
cells and HTB12 human astrocytoma cells [39]. Similarly, Sinclair et 
al. used this technique to identify the candidate tumor suppressor bio-
marker in ovarian cancer cell lines: TOV-112D and TOV-21G. They 
have employed 2D-DIGE and 2D-LC-MS/MS with tandem mass tag-
ging (TMT) to identify potential tumor suppressors in cell lysate [40]. 
In a separate study, Wilmes et al. compared the proteomic profile of pa-
clitaxel and peloruside-A-treated HL-60 promyelocytic leukemic cells 
[41]. This technique is a widely used and accepted one in the field of 
quantitative proteomics. Although the major limitations of 2-DE still 
apply to 2D-DIGE, but the introduction of more sensitive 2-D DIGE 
technique has overcome most of the limitations such as requirement of 
huge amount of sample and inability to detect low abundance proteins. 
Although in the past decade gel-free techniques have developed im-
mensely, 2D-DIGE has kept its position in proteomic research and will 
be there for years to come.
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14.6 STABLE ISOTOPE LABELLING BY AMINO ACIDS IN CELL 
CULTURE (SILAC)

The use of quantitative proteomic techniques for the identification of po-
tential biomarkers is a fast gaining ground. For cell culture-based com-
parative proteomic studies, SILAC is a method of choice [17]. A number 
of amino acids such as arginine, leucine, and lysine with stable isotope 
are suitable for use in SILAC, but lysine and arginine are the two most 
commonly used labelled amino acids. This method solely relies on met-
abolic incorporation of labelled (heavy) amino acids during cell prolif-
eration. Two different populations of cells (tumor cells and normal cells) 
are cultured in vitro under similar conditions except that tumor cells are 
grown in media containing heavy isotope of an amino acid (e.g., C13 la-
belled arginine) and the normal cell line is grown in usual media. The cells 
are allowed to grow as usual for over five to seven passages to ensure 
>95% labelling [42]. Once the cell lysates are prepared, the samples are 
combined in a 1 : 1 stoichiometric ratio. Prepared samples are then sepa-
rated on a SDS-PAGE and further subjected to in-gel trypsin digestion 
followed by MS analysis. The samples may also be digested in-solution 
before analysis. During the analysis by mass spectrometer, different iso-
tope composition can be differentiated as the labelled amino acids will 
induce a shift in the m/z ratio in comparison to the unlabelled amino acids. 
This process ensures that a particular peptide fragment of diseased sample 
differs from its normal counterpart in m/z ratio and hence enabling them 
to be detected by mass spectrometry (Figure 5). Geiger et al. identified 
prognostic biomarkers such as IDH2, CRABP2, and SEC14L2 for overall 
breast cancer survival [43]. They have done the stage-specific analysis of 
proteome using tissue culture-based model system and further validated 
them using the patient tissue samples. They validated the candidates via 
immunohistochemistry and tissue array of human tumor samples. These 
kinds of holistic studies have helped us to find the potential biomarker for 
monitoring disease progression and prognosis (CRABP2 and IDH2 are 
markers of poor prognosis and SEC14L2 is a marker of good prognosis) 
[43]. Kashyap et al. used SILAC-based proteomic investigation for the 



discovery of new candidate biomarkers in oral squamous cancer using tis-
sue culture-based system [44]. In a similar type of study, Wang et al. estab-
lished the regulatory network of karyopherin subunit alpha-2 (KPNA2) as 
a novel cargo protein in nonsmall cell lung carcinoma (NSCLC) to further 
establish KPNA2 as a candidate biomarker for NSCLC [45]. In a differ-
ent kind of approach, Cuomo et al. used this versatile technique for the 
identification of histone signatures in breast cancer cell lines. They spe-
cifically focused on histone H3 and H4 and came up with “breast cancer-
specific epigenetic signature,” with implications for the characterization 
of histone-related biomarkers [46]. Moreover, the use of this technique 
is no longer confined to in vitro cell culture. Recently, the founder of this 
technique, Matthias Mann, has come up with a variation for the use of 
SILAC in vivo [47]. Here, the authors labelled the mice by continuous 
feeding of either natural or heavy isotope lysine-containing food for four 
generations. They isolated blood samples and organs to evaluate the in-
corporation of heavy isotope and found that all the proteins were labelled 
in the second generation. Further, they validated their result by compar-
ing the proteomes from platelets, heart and erythrocytes from β1-integrin, 
β-parvin, and kindlin-3 deficient mice, respectively [47]. They proposed 
that it is a novel technique, which can be used to monitor the function(s) 
of a gene at a proteomic level in vivo by generating knockout mouse of 
that gene. Although in vivo SILAC mouse model is a great advancement, 
the same technique cannot be applied to human subjects. SILAC’s advan-
tage lies in the nonrequirement of targeted analysis of specific proteins or 
peptides, as every peptide is labelled and can be quantified depending on 
the degree of resolution and instrument sensitivity. It is also more robust 
and accurate than other quantitative techniques. However, SILAC also has 
few drawbacks like it cannot be used directly to human tissue samples as 
well as autotrophic cells (plant cells). Moreover, costly reagents are also 
an obstacle [48]. Although SILAC has its own set of disadvantages, it has 
immense potential and is yet to be exploited fully. It is gaining popularity 
quickly and will continue to be used as a significant tool in quantitative 
proteomic studies.

Super-SILAC is an improved version of SILAC. As a single-cell line 
cannot represent the heterogeneity of tumor tissue, super-SILAC helps to 
enhance the sensitivity and robustness of tissue culture-based model sys-
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FIGURE 5: A schematic overview of SILAC. Cells are grown in normal and heavy amino 
acids containing media for 6 generations to achieve maximal incorporation of heavy 
amino acids. The proteins are extracted from both populations of cells and mixed in equal 
proportion and then subjected to either in-gel or in-solution digestion. Relative abundance 
of the digested peptides is determined from the ratio of heavy-to-light peptide signals as 
obtained from MS.

tem for quantitative proteomic approach [49]. This method relies on the 
use of a mix of several SILAC-labelled cell lines as an internal standard 
for more comprehensive representation of the tumor proteome. Geiger et 
al. have used this method to show that it represents the tumor heterogene-
ity better than SILAC. They have used a panel of breast cancer, glioblas-
toma, and astrocytoma cell lines that represent the internal standards for 
these tumor types [50]. Boersema et al. used super-SILAC with LC-MS/
MS to identify N-glycosylated proteins in cell secretome and patient blood 
samples. They have used 11 breast cancer cell lines that represent differ-
ent stages of breast cancer and took few cell lines representing the super-
SILAC mix as internal standard for more accurate quantifi cation. Enriched 



N-glycosylated proteome mainly comprised the membrane and secretory 
proteins. They have validated the identifi ed candidates in human blood 
samples [51]. Lund et al. have used it for the study of metastatic markers 
in primary tumors. They compared the proteome of tumors derived from 
inoculation of a panel of isogenic human cancer cell lines with different 
metastatic capabilities into the mammary fat pad of immunodefi cient mice 
[52]. As of now, it does show a great potential to serve as a relative pro-
teomic quantitation method for understanding molecular aspects of cancer 
biology and perhaps as a convenient approach for candidate biomarker 
discovery. Due to its high accuracy and low error rate, it is becoming the 
method of choice in quantitative proteomics.

14.7 ISOBARIC TAGGING REAGENT FOR ABSOLUTE 
QUANTITATION (ITRAQ)

Another popular and comprehensive quantitative technology is Isobaric 
Tagging Reagent for Absolute Quantitation (iTRAQ) introduced by Ross 
et al. [18]. iTRAQ label consists of a reporter group (variable mass of 
114–117 Da), a balance group, and an amine-reactive group that reacts 
at lysine side chains and NH2-terminal. In iTRAQ, samples are labelled 
after trypsin digestion with four independent iTRAQ reagents. The la-
belled samples are pooled and the tagged peptides are fractionated by 
strong cation exchange (SCX) chromatography, and each desalted frac-
tion is subjected to tandem mass spectrometry [53]. The reporter groups 
of the iTRAQ reagent generate reporter ions for each sample with mass/
charge (m/z) of 114, 115, 116, and 117 during MS/MS. These reporter 
ions allow the differentiation of the different samples in MS and furnish 
the necessary quantitative information (Figure 6). Recently, electrostatic 
repulsion-hydrophilic interaction chromatography (ERLIC) and off-gel 
fractionation have evolved as an alternative to the cumbersome process of 
SCX chromatography [54, 55]. ERLIC method separates peptides on the 
basis of electrostatic repulsion and hydrophilic interaction and is found 
to be increasing the proteome coverage [54]. In off-gel fractionation, the 
samples are rehydrated on a gel strip and further separated up to 24 frac-
tions according to pI [55]. iTRAQ method can also be improved to per-
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form absolute quantification by adding internal standard peptide. Recent-
ly, Eight-plex iTRAQ reagents have also become commercially available 
that allows the quantification of eight different samples in a single run. 
The advantage of iTRAQ labelling is that signal obtained from combined 
peptides enhances the sensitivity of detection in MS and MS/MS. How-
ever, the variability in labelling efficiencies and the costly reagents are 
major limitations of this high fidelity technique [56]. The use of this pow-
erful technique is gradually becoming the method of choice in the field of 
biomarker discovery. In a study by Rehman and coworkers, this technique 
was used for candidate biomarker discovery associated with metastasis 
using both patient sample as well as prostate cancer cell lines [57]. They 
have pooled serum samples from three different stages of prostate cancer 
patient group as nonprogressing samples, progressing samples, and meta-
static samples followed by identification of a set of potential prognostic 
biomarkers that may be involved in disease progression and metastasis. 
They have identified eEF1A1 as a novel candidate biomarker significantly 
showing increase in all three groups of samples when compared to be-
nign prostatic hyperplasia (BPH) samples. They have also validated their 
results in 11 frequently used prostate cancer cell lines to show eEF1A1 
expression validation both at the translational and transcriptional levels. 
Further, they have also identified C-reactive protein (CRP) that is already 
established as a potential marker for bone metastatic prostate cancer [57]. 
In a similar type of study, metastasis-related candidate biomarkers have 
been identified in colorectal cancer cell lines. They labelled the whole-cell 
lysates of SW480 (primary cell line) and SW620 (lymph node metastatic 
variant of SW480) with 4-plex iTRAQ followed by 2D-LC and MALDI-
TOF/TOF to identify β-catenin and calcyclin binding protein (CacyBP) as 
differentially expressed. CacyBP degrades β-catenin. Thus, these two pro-
teins show a very nice inverse correlation in the progression of metastasis 
and hence are potential candidate biomarkers [58]. In another study, it 
has been used for the profiling of tyrosine phosphorylation level in breast 
cancer progression using MCF10AT breast cancer cell line [59]. Using 
complementary MALDI- and ESI-based mass spectrometry, they have 
identified 57 unique proteins comprising tyrosine kinases, phosphatases, 
and other signaling network proteins that might play significant role dur-
ing disease progression. For the first time, they have identified SLC4A7 



FIGURE 6: Experimental outline of iTRAQ. Proteins are extracted from either tissue 
samples or cultured cells and subjected to proteolytic digestion. The digested peptides are 
then labelled with isobaric tags followed by the pooling of the samples. The samples are 
then fractioned through SCX followed by tandem mass spectrometry analysis.

(sodium bicarbonate cotransporter) and TOLLIP (Toll interacting protein) 
as novel tyrosine kinase substrates associated with cancer development 
providing valuable insights into the disease progression [59].

14.8 LABEL-FREE TECHNIQUES

To overcome the difficulties in labelling techniques such as high cost of 
the reagents, higher concentration of sample requirement, and incomplete 
labelling, researchers are turning to mass spectrometry-based label-free 
shotgun proteomic technology. It is a very high throughput technique that 
opens up a new era in the discovery of potential biomarkers. Label-free 
technology is based on the assumption that the peak area of a peptide in 
the chromatogram is directly proportional to its concentration [60, 61]. 
This strategy is generally based on two classes of measurements; the first 
is based on the measurements of ion intensity changes like peptide peak ar-
eas or peak heights in chromatogram, and the second is the spectral count-
ing in the MS/MS analysis. Recently, label-free approaches have been 
used for absolute quantification in addition to the relative quantification 
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of peptides/proteins. Initially, protein abundance was estimated using pro-
tein abundance index (PAI), but later on it was converted to exponentially 
modified PAI (emPAI) which is routinely used for determining absolute 
protein abundance. Recently, a modified way of spectral counting termed 
absolute protein expression (APEX) profiling has been used to measure 
the absolute protein concentration. Decyder MS from GE Healthcare, Pro-
tein Lynx from Waters, and SIEVE from Thermo Electron are some of the 
commercially available softwares for label-free analysis. This technology 
is applied for candidate biomarker discovery mostly using clinical sam-
ples. Ishihara et al. have used it to identify N-glycoproteins as potential 
biomarkers in hepatocellular carcinoma [62]. Similarly, it was used by 
Old and coworkers to identify differentially expressed proteins in K562 
human erythroleukemia cells [63]. They used peptide spectral counts and 
LC-MS/MS to study the simulation effect under different conditions that 
promote cell differentiation by mitogen-activated protein kinase pathway 
activation [63].

Like other techniques, this technique also has its own advantages and 
limitations. It seems to be a promising technique for shotgun quantitation 
and cheap, simplistic, and less complicated in terms of analysis. The limi-
tation of this technique is redundancy in detection which may arise from 
the peptides which are shared between more than one protein, leading to 
the suppression effect. In addition, label-free quantifi cation methods suffer 
from less accurate, semiquantitative, and are not suitable for low abun-
dance and short proteins. Another drawback is in the normalization of the 
data while exploring multiple samples in multiple reactions [23, 60, 61]. 
While considering this technique for the quantitation, one should consider 
that the correlation of MS/MS spectra with a protein is only an approxima-
tion owing to the errors arising due to false identifi cation. Proteins of low 
abundance could still be present in the sample in spite of the spectral count 
being zero and also larger proteins can give rise to more tryptic digests, 
hence more spectral counts. The fact that the signal for a given peptide is 
governed by many factors like effi ciency of fragmentation and ionization 
in electrospray should also be taken into consideration. Thus, the spectra 
in MS/MS accounting for the identifi cation of a protein can only be used 
as an indication of its abundance in the sample [64]. These limitations 
have left us with the scope for more improvement.



14.9 STABLE ISOTOPE DILUTION MASS SPECTROMETRY (SID-MS)

In contrast to the relative quantification proteomic approaches, tandem 
mass spectrometry-based selected reaction monitoring (SRM), and mul-
tiple-reaction monitoring (MRM) techniques have been used for absolute 
quantification of proteins in combination with stable isotope dilution. This 
MS-based absolute quantification method relies on the incorporation of 
known quantities of isotope-labelled standards, which display very simi-
lar chromatographic properties to the target compounds but can be dis-
tinguished by their difference in m/z [65]. This isotope dilution method 
is generally a targeted approach which is focused on a limited set of pro-
teins. In this method, first initial analysis requires identification of signa-
ture peptides for targeted proteins followed by an internal standardization 
performed by spiking stable isotope-labelled peptides into the samples in 
defined amount before analysis. Quantification is performed by compar-
ing the peak height or peak area in the extracted ion chromatograph of 
the isotope-labelled and the native forms of a signature peptide [65]. The 
major advantage of this method is good linearity and excellent precision, 
but the accuracy and ability to determine the true abundance of target pro-
tein strongly depend on the choice of signature peptide selected and the 
purity of internal standard. The disadvantage of this method is that it is 
limited to small number of proteins because suitable internal standards 
need to be purchased/synthesized. The second disadvantage is that this 
kind of experiments can be preferably done in triple quadrupole mass 
spectrometers but not all available tandem mass spectrometers. First time, 
Kippen and coworkers used this method for precise determination of in-
sulin, C-peptide, and proinsulin levels in blood of nondiabetic and type 
II individuals [66]. Gerber et al. successfully used this method for abso-
lute quantification of proteins and phosphoproteins from cell lysates [67]. 
Kuzyk and coworkers used this technique to develop a method for the 
quantitation of 45 serum proteins in human plasma [68]. Recently, Jiang 
et al. quantified endogenous cystic fibrosis transmembrane conductance 
regulator (CFTR) in HT29 and BHK cells using MRM-MS and oxygen 
stable isotope dilution [69]. Apart from these notable studies, SID-MS has 
been used for the quantification and verification of potential biomarkers 
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in pancreatic [70], prostate cancer [71], and cardiovascular diseases [72]. 
SID-MS-based quantification is filling the gap between the discovery and 
validation phases, which may promote potential biomarkers towards clini-
cal trials and thereby their development as diagnostic tools.

14.10 ROLE OF TISSUE CULTURE AND PROTEOMICS IN 
CANDIDATE BIOMARKER DISCOVERY

Despite the development of the omic technologies, the search for can-
didate biomarkers that would provide detailed information on diagnosis, 
prognosis, and disease monitoring has remained largely elusive. The se-
rum proteome of patient samples is largely (>95%) covered by the most 
abundant 20 proteins and the potential biomarkers are from the remaining 
5% of the proteins, thereby yielding very few cancer biomarkers which 
are in current clinical use [73]. The availability and number of patient 
tissue samples are also a limitation. Therefore, researchers thought of an 
alternative approach comprising tissue culture-based candidate biomarker 
discovery systems to gain insight into different cancers.

The cancer proteome can be classifi ed into two broad groups: secre-
tome and cellular proteome. Secretome, comprising the secretory proteins, 
plays important roles in vital cellular functions and they can act locally as 
well as systemically. The secretome refl ects the functionality of a cell in a 
given environment [74]. The proteins or their fragments are secreted from 
cancer cells into the media termed as conditioned media (CM). Therefore, 
secretory proteins can function as novel candidate tumor markers for dif-
ferent cancers and can be extracted from tissue culture media of human 
cancer cell lines. CM, as a source for potential biomarkers, is increasingly 
becoming popular as revealed by the surge in the number of recent publi-
cations [75–77]. On the other hand, analysis of cellular proteome has also 
given insight into the pathogenesis and has helped us to come up with can-
didate biomarkers such as Hv1 (voltage-gated proton channel) [78]. The 
authors reported that Hv1 is specifi cally expressed in highly metastatic hu-
man breast tumor tissues and cell lines and that its level signifi cantly cor-
related with tumor size, classifi cation, and disease-free survival [78, 79].



Breast cancer cell lines, specifi cally MCF7, have been widely used 
as a model to explore potential breast cancer biomarkers [80]. Jung et al. 
identifi ed potential biomarkers in lung cancer using tissue culture-based 
approaches [81]. It is becoming increasingly clearer that cell lines are as 
heterogeneous as primary tumors [8].

Although the in vitro cell culture model provides us with great advan-
tages, it also has its own set of disadvantages as reported by Kulasingam 
and Diamandis, like a single-cell line has multiple variants that makes 
this system complex. Moreover, it is yet to reach the stage where it can 
mimic the tumor microenvironment as well as its real characteristics, and 
others [6]. The three-dimensional (3D) cell culture techniques have made 
the things more reliable and versatile because of mimicking the in vivo 
conditions [82]. Therefore, their usage for candidate biomarker discov-
ery is more relevant. Moreover, the fi eld of drug discovery and disease 
prevention largely depends on the tissue culture-based model system, ma-
jorly relying on high-throughput proteomics techniques, because there is 
no scope for direct human trials of newly developed lead molecules [83, 
84]. Recently, there have been a lot of reports where researchers have tried 
to fi nd out the working mechanism of a drug through proteomic, genomic, 
and many other techniques [85, 86]. Currently, there is a major concern 
regarding the drug resistance, which implies the nonresponsiveness of a 
disease for a certain drug at its working concentration. Researchers are 
relying heavily on robust proteomic approaches for fi nding the probable 
“culprits” for this drug resistance [87–91]. The studies using tissue cul-
ture-based candidate biomarker discovery platform are shown in Table 1.

14.11 ADVANTAGES OF TISSUE CULTURE IN BIOMARKER 
DISCOVERY AND DIAGNOSIS

Cancer cell lines are the most widely used models to study the deregula-
tion in cancer as well as the identification of potential biomarkers for the 
early detection and prognosis of cancer [92, 100]. Both the cellular milieu 
and conditioned medium (CM) serve as a rich source of potential biomark-
ers. The clinical relevance of using cell lines is already well established 
[101, 102]. As PSA (prostate-specific antigen), the existing biomarker for 
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Table 1: Tissue culture-based candidate biom

arkers discovery in different cancers.
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detection of prostate cancer poses problems; there is a need for a more ac-
curate biomarker. Qian et al. identified Spondin 2 (Spon-2) as a candidate 
biomarker for prostate cancer [92]. They first identified the extra-cellular 
proteins by 2-DE coupled with LC-MS/MS. Further, they concentrated 
on Spon-2 as it was consistently overexpressing in prostate cancer cell 
secretome, and then they validated their findings in human prostate cancer 
tissue samples. Moreover, they have checked the sensitivity and specific-
ity of Spon-2 by receiver operator characteristic (ROC) curve analysis. 
Spon-2 also out rated PSA in the patient samples in terms of sensitivity 
and specificity [92]. Similarly, Lee et al. showed high-mobility group pro-
tein B1 (HMGB1) as a better prognostic marker over carcinoembryonic 
antigen (CEA) for colorectal carcinoma [102]. They have used 10 colon 
cancer cell lines along with a normal colon cell line CCD18Co and de-
tected the presence of HMGB1 in the secreted medium. Further, they vali-
dated their findings in patient sera also. They have proven the diagnostic 
value of HMGB1 in a cohort of 219 colorectal patient samples along with 
75 control samples. HMGB1 showed more stage-specific diagnosis value 
than CEA. When HMGB1 and CEA are combined, the overall diagnostic 
sensitivity is improved when compared to CEA alone (42% versus 25.6%) 
and the stage 1 cancer diagnosis (47% versus 5.9%) [102]. This kind of 
study sets the platform for the identification of potential new prognostic 
biomarkers that might be a tedious job using patient samples directly. The 
cell culture-based model system possesses its own uniqueness and ben-
efits. The availability and the number of patient tissue samples always 
present a challenge for the researchers at least in countries with poor pub-
lic awareness. This is where the easy availability of cell lines (cancerous 
and normal) comes in. They can also be easily propagated compared to the 
patient sample. The other advantage is that the cell culture-based model 
system is cost effective compared to the patient sample system. This sys-
tem also has the versatility that patient sample system does not have. The 
cell culture-based system can be used to check the potential efficacy of a 
novel lead molecule which can be a prospective drug over various types of 
cancers. This kind of studies also allows us to get an insight into a drug’s 
mechanism of action.

CM of cancer cells allows us to search for potential biomarkers at the 
level of secretome. This approach offers various advantages like removal 



of the potential infectious sources. Few of the currently available biomark-
ers also pose problems, as for pancreatic cancer, the best available marker 
is CA19.9; however, the false positive rates of this marker are high as 
they are also elevated in nonneoplastic conditions like acute and chronic 
pancreatitis, hepatitis, and biliary obstruction [103]. The cell secretome 
possesses a great advantage for the dissection of potential biomarkers; as 
for the clinical use, the best biomarkers are those that can be detected in 
body fl uids. The cell secretome indirectly represents the proteins that can 
be found in the body fl uids of a patient, so the identifi ed secretory proteins 
can be a good biomarker. Moreover, the dynamic range of the secretome 
is very low compared to cell lysate, so it is a better source for the profi l-
ing of biomarkers for diseases like cancer. It is a noninvasive method for 
the detection of biomarkers rather than directly encountering the patient 
samples, and the availability of so many cell lines that represent the dif-
ferent stages of the disease helps to provide relevant information [104]. 
It also effectively bypasses the large amount of serum proteins present in 
the body fl uids of patients. Importin alpha subunit-2 (also called KPNA-
2) was identifi ed as a candidate biomarker by Wang and colleagues using 
CL1-0 and CL1-5 lung cancer cell lines. They have integrated the data 
of cancer cell secretome and transcriptome of adenocarcinoma tissues. 
Further, they have validated their results by immunohistochemistry, and, 
moreover, they have shown that KPNA-2 and CEA in combination pro-
duce more effi cient diagnostic capacity in the patients [105]. A similar ap-
proach was taken by Kulasingam and Diamandis to identify the candidate 
biomarkers in breast cancer cell lines using a panel of three breast cancer 
cell lines: MCF-10A, BT474, and MDA-MB-468. They have identifi ed 
low abundant proteins like elafi n and kallikrein family of proteins along 
with highly abundant proteins by using “bottom-up” proteomic technique 
via 2D-LC-MS/MS on a linear ion trap (LTQ) as a potential drug target 
as well as candidate biomarker [106]. Using this technique, Ahmed et al. 
have identifi ed a candidate biomarker, immunoreactive integrin-linked ki-
nase (ILK) for ovarian cancer [107]. Similarly, the cell line established 
from human prostate cancer was confi rmed to release PSA when cultured 
in serum-free CM [108]. This system can be easily modifi ed to allow us 
to study the prognostic and diagnostic markers under different conditions. 
If we wish to study the differential regulation of a candidate prognostic 
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biomarker in different disease conditions, it is only possible by the use 
of tissue culture model system. Another very important advantage of this 
system over the patient tissue sample is the relatively easy detection of 
the less abundant proteins, which are the source of potential biomarkers. 
In patient sample, the high abundant proteins like albumin and immuno-
globulin create problem for the detection of less abundant proteins through 
high throughput techniques like mass spectrometry.

Nowadays there are ways to remove high abundant proteins. In most 
cases, it seems to affect the protein concentration in a big way and people 
are still trying to fi nd a way to improve this technique. It is often cumber-
some to reproduce the data using patient samples because of the hetero-
geneity. The physical as well as physiological status of the patient plays 
important role in the tumor biology, but cell culture-based system offers a 
better way to solve this problem as we have a way to propagate the cells 
for passages and the results can be more easily reproduced in this system 
as we can use the same lineage of cells for the study. This system allows us 
to detect the alterations at proteome level which is also possible for patient 
sample study but again it is more labour intensive, time consuming, and 
expensive. In well-defi ned experimental conditions, the proteome of a cell 
line should refl ect the genetic changes of a cell. To get an in vivo insight 
into the disease, researchers use cancer cell xenograft model system. More 
recently, 3D cell culture system has become a model of choice. Mikesh et 
al. have used this system to successfully identify molecular markers as-
sociated with melanoma [109]. CD151 was identifi ed as a potential prog-
nostic marker for breast cancer. The researchers have used MDA-MB-231 
as a model system. In tumor xenograft model, CD-151 knockdown cells 
showed reduced tumorigenecity compared to normal tumor cells. CD-151 
also affects the tumor vasculature. Moreover, the overall survival rate of 
CD-151 positive patients was 45.8% compared to CD-151 negative pa-
tients. Further, they have deciphered its molecular modulator network to 
establish it as a novel drug target [110]. In a similar kind of study, Yao et 
al. have used a lectin affi nity-based approach to enrich as well as increase 
the detectable number of secreted proteins in the CM of cultured tissues 
followed by LC-MS/MS and identifi ed EFEMP2 as a potential marker for 
early detection of colorectal carcinoma (CRC). They have also proven it to 
be superior to CRC biomarker and CEA and validated their results by im-



munohistochemistry [95]. Lee and coworkers have established H+-myo-
inositol transporter SLC2A13 as a potential biomarker for cancer stem cell 
(CSC) in oral squamous cell carcinoma (OSCC) [111]. Head and neck car-
cinoma is one of the poorly understood cancer and there is a need of bio-
markers for its diagnosis and prognosis at early stages. Ralhan et al. have 
used proteomic-based approaches to identify new potential biomarkers for 
head and neck carcinoma [96]. They have analyzed the secretory medium 
of different head and neck cancer cell lines via LC-MS/MS and identifi ed 
a panel of potential biomarkers. Further, they have validated their results 
via immunoblotting in patient sera also [96]. Once identifi ed, few of these 
potential biomarkers can be undertaken for clinical trials to further inves-
tigate their potential as biomarkers. Similarly, tissue culture-based model 
system has been used to mine for potential biomarkers in other cancers as 
well (Table 1) [93, 94, 97–99].

As stated, there are various advantages of using tissue culture-based 
candidate biomarker discovery but ultimately the studies have to be car-
ried out in patient sample to validate a potential candidate as a biomarker 
for diagnosis, prognosis, or disease monitoring. This in no way under-
mines the potential of tissue culture-based model in potential biomarker 
discovery as the validation can be achieved by alternative means, but the 
identifi cation is less cumbersome using this system. The initial studies 
which include the study of differential expression of a candidate in normal 
versus malignant cells, their mode of action, or whether they can be used 
as a potential drug target, have to be done using tissue culture-based model 
system. It creates the foundation based upon which we can carry forward 
the hunt for novel biomarkers not only in the fi eld of oncology but also for 
other prevalent diseases.

14.12 FUTURE PERSPECTIVE

The inherent capability of mass spectrometry along with its sensitivity, 
speed, and specificity when combined with tissue culture-based model 
provides a promising tool for the discovery of candidate potential bio-
markers (Table 2). In this paper, we have tried to emphasize the use of 
tissue culture as model for biomarker discovery along with brief outline 
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of different mass spectrometry-based quantitative proteomic techniques 
that are routinely used in such studies. With the advancement of mass 
spectrometry-based proteomic techniques and bioinformatics tools, tis-
sue culture-based model system becomes the most beneficial choice for 
the identification of potential biomarkers. The CM of these cell lines also 
serves as a potent source of biomarkers. The contemporary biomarkers 
generally used in clinics such as carbohydrate antigen CA 125, CA 19.9, 
and PSA were discovered using cancerous cell lines or tumor extracts 
[112]. It is likely that the tumor microenvironment or the tumor itself can 
be a source of biomarkers allowing for better sensitivity and specificity as 
well as proper diagnosis of the disease. However, in tissue culture-based 
system, the role of tumor microenvironment in biomarker discovery is yet 
to reach its peak. The 3D culture methods are currently being used that can 
be considered as an alternative to 2D culture system which receives criti-
cism for its inability to mimic tumor microenvironment. The CM enriched 
with secretory proteins is largely used for the identification of potential 
cancer biomarkers. It acts as a perfect source for the potential biomark-
ers, and to date the majority of the biomarkers being used clinically are 
secretory proteins. Proteome profiles of many cancers are influenced by 
hormones, and tissue culture-based model system serves as a promising 
approach to study this process. Hormonal stimulation of the cells followed 
by different gel-based or gel-free proteomic approaches to identify differ-
entially expressed proteins serves as an approach to search for the “cause-
effect” candidates. Tissue culture-based model system can also be used in 
the field of pharmacokinetics and drug discovery. The potential effect of a 
drug can be assessed by using tissue culture-based system. The differen-
tial expression of proteins upon drug treatment also provides the insight 
into the mechanism of action as well as potential drug targets. Moreover, 
these differentially expressed proteins can serve as potential biomarkers 
for drug response in clinics.

There has been a rapid fruitful development of MS-based proteomic 
techniques in the last decade that has immensely helped researchers in 
candidate biomarker discovery. First, there was 2-DE and then its 2D-
DIGE that enhances the accuracy of quantitation utilizing very littel 
amount of sample. Now, there are techniques like SILAC and iTRAQ 
which are more advanced versions of labelling techniques in combina-



TABLE 2: Different mass spectrometry-based proteomic approaches with its merits, 
demerits, and compatibility towards tissue culture.

Proteomic 
approach

Merits Demerits Compatibil-
ity with tissue 
culturea

Refer-
ences

2-DE (i) Robust (i) Involves large amount 
of sample

*** [15, 33]

(ii) Simplistic (ii) Low throughput

(iii) Highly suitable 
for MS analysis

(iii) Poor recovery of 
hydrophobic proteins

2D-DIGE (i) Multiplexed (i) Not suitable for MS 
analysis

**** [16, 34]

(ii) Better quantita-
tion

(ii) Expensive Cy dyes

(iii) Minimized gel to 
gel variation

(iii) Poor recovery of 
hydrophobic proteins

SILAC (i) High-throughput (i) Only suitable for tissue 
culture model

***** [25, 48]

(ii) Robust and ac-
curate

(ii) Costly reagents

(iii) Sensitivity and 
simplicity

(iii) Not applicable to tis-
sue samples

Super-
SILAC

(i) Better repre-
sentation of tumor 
heterogeneity 

(i) Only suitable to tissue 
culture model

***** [50]

(ii) Accurate quan-
titation

(ii) Costly reagents

(iii) Less error rate (iii) Internal standard 
library required

iTRAQ (i) Multiplexed (i) Incomplete labelling **** [18, 56]

(ii) Applicable to 
versatile samples

(ii) Involves high amount 
of sample

(iii) Better quantita-
tion

(iii) Expensive reagents

Label free (i) Involves less 
amount of sample

(i) High-throughput 
instrumentation

**** [61, 64]

(ii) Broader applica-
bility

(ii) Redundancy in detec-
tion

(iii) Avoid labelling (iii) Not suitable for low 
abundant proteins
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Proteomic 
approach

Merits Demerits Compatibil-
ity with tissue 
culturea

Refer-
ences

SID-MS (i) Absolute quantita-
tion

(i) Applicable to limited 
number of proteins 

*** [65, 68]

(ii) Targeted ap-
proach

(ii) Internal standards are 
required

(iii) Applicable to 
versatile samples

(iii) Generally used for 
validation

aNumber of “*” indicates extent of compatibility.

tion with improved chromatographic, and mass spectrometric techniques 
provide better resolution. Recently, people have started moving towards 
label-free quantitation, which is the most advanced form of relative quan-
titation-based proteomic technique. With this advancement, the number of 
potential biomarkers will certainly increase, but we have to be very careful 
and critical in choosing the biomarkers that can be used clinically. It is not 
tough to anticipate more development in the near future that will make tis-
sue culture-based systems for potential biomarker discovery more robust, 
sensitive, and reliable. This will lead to the discovery of useful biomarkers 
for patient diagnosis, prognosis, treatment, and monitoring not only for 
cancer but also for other diseases.
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